import { LagrangePolynomialApproximation } from "../../Source/Cesium.js"; describe("Core/LagrangePolynomialApproximation", function () { //The results of these specs were validated against STK Components //an aerospace SDK available from Analytical Graphics. www.agi.com/components/ var xTable = [0, 60, 120, 180, 240, 300, 360, 420]; var yTable = [ 13378137.0, 0.0, 0, 13374128.3576279, 327475.593690065, 0, 13362104.8328212, 654754.936954423, 0, 13342073.6310691, 981641.896976832, 0, 13314046.7567223, 1307940.57608951, 0, 13278041.005799, 1633455.42917117, 0, 13234077.9559193, 1957991.38083385, 0, 13182183.953374, 2281353.94232816, 0, ]; var x = 100.0; it("interpolation produces correct results.", function () { var result = LagrangePolynomialApproximation.interpolateOrderZero( x, xTable, yTable, 3 ); var expectedResult = [13367002.870928623, 545695.7388100647, 0]; expect(result).toEqualEpsilon(expectedResult, 1e-15); }); it("interpolation produces correct results with a result parameter", function () { var result = new Array(3); var returnedResult = LagrangePolynomialApproximation.interpolateOrderZero( x, xTable, yTable, 3, result ); var expectedResult = [13367002.870928623, 545695.7388100647, 0]; expect(result).toBe(returnedResult); expect(result).toEqualEpsilon(expectedResult, 1e-15); }); it("getRequiredDataPoints should be 1 more than degree, except for 0, which requires 2", function () { expect(LagrangePolynomialApproximation.getRequiredDataPoints(0)).toEqual(2); expect(LagrangePolynomialApproximation.getRequiredDataPoints(1)).toEqual(2); expect(LagrangePolynomialApproximation.getRequiredDataPoints(2)).toEqual(3); expect(LagrangePolynomialApproximation.getRequiredDataPoints(3)).toEqual(4); }); });