import Cartesian3 from "./Cartesian3.js"; import CornerType from "./CornerType.js"; import defined from "./defined.js"; import CesiumMath from "./Math.js"; import Matrix3 from "./Matrix3.js"; import PolylinePipeline from "./PolylinePipeline.js"; import PolylineVolumeGeometryLibrary from "./PolylineVolumeGeometryLibrary.js"; import Quaternion from "./Quaternion.js"; /** * @private */ var CorridorGeometryLibrary = {}; var scratch1 = new Cartesian3(); var scratch2 = new Cartesian3(); var scratch3 = new Cartesian3(); var scratch4 = new Cartesian3(); var scaleArray2 = [new Cartesian3(), new Cartesian3()]; var cartesian1 = new Cartesian3(); var cartesian2 = new Cartesian3(); var cartesian3 = new Cartesian3(); var cartesian4 = new Cartesian3(); var cartesian5 = new Cartesian3(); var cartesian6 = new Cartesian3(); var cartesian7 = new Cartesian3(); var cartesian8 = new Cartesian3(); var cartesian9 = new Cartesian3(); var cartesian10 = new Cartesian3(); var quaterion = new Quaternion(); var rotMatrix = new Matrix3(); function computeRoundCorner( cornerPoint, startPoint, endPoint, cornerType, leftIsOutside ) { var angle = Cartesian3.angleBetween( Cartesian3.subtract(startPoint, cornerPoint, scratch1), Cartesian3.subtract(endPoint, cornerPoint, scratch2) ); var granularity = cornerType === CornerType.BEVELED ? 1 : Math.ceil(angle / CesiumMath.toRadians(5)) + 1; var size = granularity * 3; var array = new Array(size); array[size - 3] = endPoint.x; array[size - 2] = endPoint.y; array[size - 1] = endPoint.z; var m; if (leftIsOutside) { m = Matrix3.fromQuaternion( Quaternion.fromAxisAngle( Cartesian3.negate(cornerPoint, scratch1), angle / granularity, quaterion ), rotMatrix ); } else { m = Matrix3.fromQuaternion( Quaternion.fromAxisAngle(cornerPoint, angle / granularity, quaterion), rotMatrix ); } var index = 0; startPoint = Cartesian3.clone(startPoint, scratch1); for (var i = 0; i < granularity; i++) { startPoint = Matrix3.multiplyByVector(m, startPoint, startPoint); array[index++] = startPoint.x; array[index++] = startPoint.y; array[index++] = startPoint.z; } return array; } function addEndCaps(calculatedPositions) { var cornerPoint = cartesian1; var startPoint = cartesian2; var endPoint = cartesian3; var leftEdge = calculatedPositions[1]; startPoint = Cartesian3.fromArray( calculatedPositions[1], leftEdge.length - 3, startPoint ); endPoint = Cartesian3.fromArray(calculatedPositions[0], 0, endPoint); cornerPoint = Cartesian3.midpoint(startPoint, endPoint, cornerPoint); var firstEndCap = computeRoundCorner( cornerPoint, startPoint, endPoint, CornerType.ROUNDED, false ); var length = calculatedPositions.length - 1; var rightEdge = calculatedPositions[length - 1]; leftEdge = calculatedPositions[length]; startPoint = Cartesian3.fromArray( rightEdge, rightEdge.length - 3, startPoint ); endPoint = Cartesian3.fromArray(leftEdge, 0, endPoint); cornerPoint = Cartesian3.midpoint(startPoint, endPoint, cornerPoint); var lastEndCap = computeRoundCorner( cornerPoint, startPoint, endPoint, CornerType.ROUNDED, false ); return [firstEndCap, lastEndCap]; } function computeMiteredCorner( position, leftCornerDirection, lastPoint, leftIsOutside ) { var cornerPoint = scratch1; if (leftIsOutside) { cornerPoint = Cartesian3.add(position, leftCornerDirection, cornerPoint); } else { leftCornerDirection = Cartesian3.negate( leftCornerDirection, leftCornerDirection ); cornerPoint = Cartesian3.add(position, leftCornerDirection, cornerPoint); } return [ cornerPoint.x, cornerPoint.y, cornerPoint.z, lastPoint.x, lastPoint.y, lastPoint.z, ]; } function addShiftedPositions(positions, left, scalar, calculatedPositions) { var rightPositions = new Array(positions.length); var leftPositions = new Array(positions.length); var scaledLeft = Cartesian3.multiplyByScalar(left, scalar, scratch1); var scaledRight = Cartesian3.negate(scaledLeft, scratch2); var rightIndex = 0; var leftIndex = positions.length - 1; for (var i = 0; i < positions.length; i += 3) { var pos = Cartesian3.fromArray(positions, i, scratch3); var rightPos = Cartesian3.add(pos, scaledRight, scratch4); rightPositions[rightIndex++] = rightPos.x; rightPositions[rightIndex++] = rightPos.y; rightPositions[rightIndex++] = rightPos.z; var leftPos = Cartesian3.add(pos, scaledLeft, scratch4); leftPositions[leftIndex--] = leftPos.z; leftPositions[leftIndex--] = leftPos.y; leftPositions[leftIndex--] = leftPos.x; } calculatedPositions.push(rightPositions, leftPositions); return calculatedPositions; } /** * @private */ CorridorGeometryLibrary.addAttribute = function ( attribute, value, front, back ) { var x = value.x; var y = value.y; var z = value.z; if (defined(front)) { attribute[front] = x; attribute[front + 1] = y; attribute[front + 2] = z; } if (defined(back)) { attribute[back] = z; attribute[back - 1] = y; attribute[back - 2] = x; } }; var scratchForwardProjection = new Cartesian3(); var scratchBackwardProjection = new Cartesian3(); /** * @private */ CorridorGeometryLibrary.computePositions = function (params) { var granularity = params.granularity; var positions = params.positions; var ellipsoid = params.ellipsoid; var width = params.width / 2; var cornerType = params.cornerType; var saveAttributes = params.saveAttributes; var normal = cartesian1; var forward = cartesian2; var backward = cartesian3; var left = cartesian4; var cornerDirection = cartesian5; var startPoint = cartesian6; var previousPos = cartesian7; var rightPos = cartesian8; var leftPos = cartesian9; var center = cartesian10; var calculatedPositions = []; var calculatedLefts = saveAttributes ? [] : undefined; var calculatedNormals = saveAttributes ? [] : undefined; var position = positions[0]; //add first point var nextPosition = positions[1]; forward = Cartesian3.normalize( Cartesian3.subtract(nextPosition, position, forward), forward ); normal = ellipsoid.geodeticSurfaceNormal(position, normal); left = Cartesian3.normalize(Cartesian3.cross(normal, forward, left), left); if (saveAttributes) { calculatedLefts.push(left.x, left.y, left.z); calculatedNormals.push(normal.x, normal.y, normal.z); } previousPos = Cartesian3.clone(position, previousPos); position = nextPosition; backward = Cartesian3.negate(forward, backward); var subdividedPositions; var corners = []; var i; var length = positions.length; for (i = 1; i < length - 1; i++) { // add middle points and corners normal = ellipsoid.geodeticSurfaceNormal(position, normal); nextPosition = positions[i + 1]; forward = Cartesian3.normalize( Cartesian3.subtract(nextPosition, position, forward), forward ); cornerDirection = Cartesian3.normalize( Cartesian3.add(forward, backward, cornerDirection), cornerDirection ); var forwardProjection = Cartesian3.multiplyByScalar( normal, Cartesian3.dot(forward, normal), scratchForwardProjection ); Cartesian3.subtract(forward, forwardProjection, forwardProjection); Cartesian3.normalize(forwardProjection, forwardProjection); var backwardProjection = Cartesian3.multiplyByScalar( normal, Cartesian3.dot(backward, normal), scratchBackwardProjection ); Cartesian3.subtract(backward, backwardProjection, backwardProjection); Cartesian3.normalize(backwardProjection, backwardProjection); var doCorner = !CesiumMath.equalsEpsilon( Math.abs(Cartesian3.dot(forwardProjection, backwardProjection)), 1.0, CesiumMath.EPSILON7 ); if (doCorner) { cornerDirection = Cartesian3.cross( cornerDirection, normal, cornerDirection ); cornerDirection = Cartesian3.cross( normal, cornerDirection, cornerDirection ); cornerDirection = Cartesian3.normalize(cornerDirection, cornerDirection); var scalar = width / Math.max( 0.25, Cartesian3.magnitude( Cartesian3.cross(cornerDirection, backward, scratch1) ) ); var leftIsOutside = PolylineVolumeGeometryLibrary.angleIsGreaterThanPi( forward, backward, position, ellipsoid ); cornerDirection = Cartesian3.multiplyByScalar( cornerDirection, scalar, cornerDirection ); if (leftIsOutside) { rightPos = Cartesian3.add(position, cornerDirection, rightPos); center = Cartesian3.add( rightPos, Cartesian3.multiplyByScalar(left, width, center), center ); leftPos = Cartesian3.add( rightPos, Cartesian3.multiplyByScalar(left, width * 2, leftPos), leftPos ); scaleArray2[0] = Cartesian3.clone(previousPos, scaleArray2[0]); scaleArray2[1] = Cartesian3.clone(center, scaleArray2[1]); subdividedPositions = PolylinePipeline.generateArc({ positions: scaleArray2, granularity: granularity, ellipsoid: ellipsoid, }); calculatedPositions = addShiftedPositions( subdividedPositions, left, width, calculatedPositions ); if (saveAttributes) { calculatedLefts.push(left.x, left.y, left.z); calculatedNormals.push(normal.x, normal.y, normal.z); } startPoint = Cartesian3.clone(leftPos, startPoint); left = Cartesian3.normalize( Cartesian3.cross(normal, forward, left), left ); leftPos = Cartesian3.add( rightPos, Cartesian3.multiplyByScalar(left, width * 2, leftPos), leftPos ); previousPos = Cartesian3.add( rightPos, Cartesian3.multiplyByScalar(left, width, previousPos), previousPos ); if ( cornerType === CornerType.ROUNDED || cornerType === CornerType.BEVELED ) { corners.push({ leftPositions: computeRoundCorner( rightPos, startPoint, leftPos, cornerType, leftIsOutside ), }); } else { corners.push({ leftPositions: computeMiteredCorner( position, Cartesian3.negate(cornerDirection, cornerDirection), leftPos, leftIsOutside ), }); } } else { leftPos = Cartesian3.add(position, cornerDirection, leftPos); center = Cartesian3.add( leftPos, Cartesian3.negate( Cartesian3.multiplyByScalar(left, width, center), center ), center ); rightPos = Cartesian3.add( leftPos, Cartesian3.negate( Cartesian3.multiplyByScalar(left, width * 2, rightPos), rightPos ), rightPos ); scaleArray2[0] = Cartesian3.clone(previousPos, scaleArray2[0]); scaleArray2[1] = Cartesian3.clone(center, scaleArray2[1]); subdividedPositions = PolylinePipeline.generateArc({ positions: scaleArray2, granularity: granularity, ellipsoid: ellipsoid, }); calculatedPositions = addShiftedPositions( subdividedPositions, left, width, calculatedPositions ); if (saveAttributes) { calculatedLefts.push(left.x, left.y, left.z); calculatedNormals.push(normal.x, normal.y, normal.z); } startPoint = Cartesian3.clone(rightPos, startPoint); left = Cartesian3.normalize( Cartesian3.cross(normal, forward, left), left ); rightPos = Cartesian3.add( leftPos, Cartesian3.negate( Cartesian3.multiplyByScalar(left, width * 2, rightPos), rightPos ), rightPos ); previousPos = Cartesian3.add( leftPos, Cartesian3.negate( Cartesian3.multiplyByScalar(left, width, previousPos), previousPos ), previousPos ); if ( cornerType === CornerType.ROUNDED || cornerType === CornerType.BEVELED ) { corners.push({ rightPositions: computeRoundCorner( leftPos, startPoint, rightPos, cornerType, leftIsOutside ), }); } else { corners.push({ rightPositions: computeMiteredCorner( position, cornerDirection, rightPos, leftIsOutside ), }); } } backward = Cartesian3.negate(forward, backward); } position = nextPosition; } normal = ellipsoid.geodeticSurfaceNormal(position, normal); scaleArray2[0] = Cartesian3.clone(previousPos, scaleArray2[0]); scaleArray2[1] = Cartesian3.clone(position, scaleArray2[1]); subdividedPositions = PolylinePipeline.generateArc({ positions: scaleArray2, granularity: granularity, ellipsoid: ellipsoid, }); calculatedPositions = addShiftedPositions( subdividedPositions, left, width, calculatedPositions ); if (saveAttributes) { calculatedLefts.push(left.x, left.y, left.z); calculatedNormals.push(normal.x, normal.y, normal.z); } var endPositions; if (cornerType === CornerType.ROUNDED) { endPositions = addEndCaps(calculatedPositions); } return { positions: calculatedPositions, corners: corners, lefts: calculatedLefts, normals: calculatedNormals, endPositions: endPositions, }; }; export default CorridorGeometryLibrary;