//This file is automatically rebuilt by the Cesium build process. export default "/*!\n\ * Atmosphere code:\n\ *\n\ * Copyright (c) 2000-2005, Sean O'Neil (s_p_oneil@hotmail.com)\n\ * All rights reserved.\n\ *\n\ * Redistribution and use in source and binary forms, with or without\n\ * modification, are permitted provided that the following conditions\n\ * are met:\n\ *\n\ * * Redistributions of source code must retain the above copyright notice,\n\ * this list of conditions and the following disclaimer.\n\ * * Redistributions in binary form must reproduce the above copyright notice,\n\ * this list of conditions and the following disclaimer in the documentation\n\ * and/or other materials provided with the distribution.\n\ * * Neither the name of the project nor the names of its contributors may be\n\ * used to endorse or promote products derived from this software without\n\ * specific prior written permission.\n\ *\n\ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\"\n\ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\n\ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE\n\ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE\n\ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL\n\ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR\n\ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER\n\ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,\n\ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE\n\ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\n\ *\n\ * Modifications made by Analytical Graphics, Inc.\n\ */\n\ \n\ // Atmosphere:\n\ // Code: http://sponeil.net/\n\ // GPU Gems 2 Article: https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter16.html\n\ \n\ const float Kr = 0.0025;\n\ const float Km = 0.0015;\n\ const float ESun = 15.0;\n\ \n\ const float fKrESun = Kr * ESun;\n\ const float fKmESun = Km * ESun;\n\ const float fKr4PI = Kr * 4.0 * czm_pi;\n\ const float fKm4PI = Km * 4.0 * czm_pi;\n\ \n\ // Original: vec3(1.0 / pow(0.650, 4.0), 1.0 / pow(0.570, 4.0), 1.0 / pow(0.475, 4.0));\n\ const vec3 v3InvWavelength = vec3(5.60204474633241, 9.473284437923038, 19.64380261047721);\n\ \n\ const float fScaleDepth = 0.25;\n\ \n\ struct AtmosphereColor\n\ {\n\ vec3 mie;\n\ vec3 rayleigh;\n\ };\n\ \n\ const int nSamples = 2;\n\ const float fSamples = 2.0;\n\ \n\ float scale(float fCos)\n\ {\n\ float x = 1.0 - fCos;\n\ return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));\n\ }\n\ \n\ AtmosphereColor computeGroundAtmosphereFromSpace(vec3 v3Pos, bool dynamicLighting, vec3 lightDirectionWC)\n\ {\n\ float fInnerRadius = czm_ellipsoidRadii.x;\n\ float fOuterRadius = czm_ellipsoidRadii.x * 1.025;\n\ float fOuterRadius2 = fOuterRadius * fOuterRadius;\n\ \n\ float fScale = 1.0 / (fOuterRadius - fInnerRadius);\n\ float fScaleOverScaleDepth = fScale / fScaleDepth;\n\ \n\ // Get the ray from the camera to the vertex and its length (which is the far point of the ray passing through the atmosphere)\n\ vec3 v3Ray = v3Pos - czm_viewerPositionWC;\n\ float fFar = length(v3Ray);\n\ v3Ray /= fFar;\n\ \n\ float fCameraHeight = length(czm_viewerPositionWC);\n\ float fCameraHeight2 = fCameraHeight * fCameraHeight;\n\ \n\ // This next line is an ANGLE workaround. It is equivalent to B = 2.0 * dot(czm_viewerPositionWC, v3Ray),\n\ // which is what it should be, but there are problems at the poles.\n\ float B = 2.0 * length(czm_viewerPositionWC) * dot(normalize(czm_viewerPositionWC), v3Ray);\n\ float C = fCameraHeight2 - fOuterRadius2;\n\ float fDet = max(0.0, B*B - 4.0 * C);\n\ float fNear = 0.5 * (-B - sqrt(fDet));\n\ \n\ // Calculate the ray's starting position, then calculate its scattering offset\n\ vec3 v3Start = czm_viewerPositionWC + v3Ray * fNear;\n\ fFar -= fNear;\n\ float fDepth = exp((fInnerRadius - fOuterRadius) / fScaleDepth);\n\ \n\ // The light angle based on the scene's light source would be:\n\ // dot(lightDirectionWC, v3Pos) / length(v3Pos);\n\ // When we want the atmosphere to be uniform over the globe so it is set to 1.0.\n\ \n\ float fLightAngle = czm_branchFreeTernary(dynamicLighting, dot(lightDirectionWC, v3Pos) / length(v3Pos), 1.0);\n\ float fCameraAngle = dot(-v3Ray, v3Pos) / length(v3Pos);\n\ float fCameraScale = scale(fCameraAngle);\n\ float fLightScale = scale(fLightAngle);\n\ float fCameraOffset = fDepth*fCameraScale;\n\ float fTemp = (fLightScale + fCameraScale);\n\ \n\ // Initialize the scattering loop variables\n\ float fSampleLength = fFar / fSamples;\n\ float fScaledLength = fSampleLength * fScale;\n\ vec3 v3SampleRay = v3Ray * fSampleLength;\n\ vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5;\n\ \n\ // Now loop through the sample rays\n\ vec3 v3FrontColor = vec3(0.0);\n\ vec3 v3Attenuate = vec3(0.0);\n\ for(int i=0; i