/** * @license * Copyright (c) 2000-2005, Sean O'Neil (s_p_oneil@hotmail.com) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the project nor the names of its contributors may be * used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Modifications made by Cesium GS, Inc. */ // Code: http://sponeil.net/ // GPU Gems 2 Article: https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter16.html const float Kr = 0.0025; const float Kr4PI = Kr * 4.0 * czm_pi; const float Km = 0.0015; const float Km4PI = Km * 4.0 * czm_pi; const float ESun = 15.0; const float KmESun = Km * ESun; const float KrESun = Kr * ESun; const vec3 InvWavelength = vec3( 5.60204474633241, // Red = 1.0 / Math.pow(0.650, 4.0) 9.473284437923038, // Green = 1.0 / Math.pow(0.570, 4.0) 19.643802610477206); // Blue = 1.0 / Math.pow(0.475, 4.0) const float rayleighScaleDepth = 0.25; const int nSamples = 2; const float fSamples = 2.0; const float g = -0.95; const float g2 = g * g; #ifdef COLOR_CORRECT uniform vec3 u_hsbShift; // Hue, saturation, brightness #endif uniform vec3 u_radiiAndDynamicAtmosphereColor; // outer radius, inner radius, dynamic atmosphere color flag float scale(float cosAngle) { float x = 1.0 - cosAngle; return rayleighScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25)))); } vec3 getLightDirection(vec3 positionWC) { float lightEnum = u_radiiAndDynamicAtmosphereColor.z; vec3 lightDirection = positionWC * float(lightEnum == 0.0) + czm_lightDirectionWC * float(lightEnum == 1.0) + czm_sunDirectionWC * float(lightEnum == 2.0); return normalize(lightDirection); } void calculateRayScatteringFromSpace(in vec3 positionWC, in vec3 ray, in float innerRadius, in float outerRadius, inout float far, out vec3 start, out float startOffset) { // Calculate the closest intersection of the ray with the outer atmosphere (which is the near point of the ray passing through the atmosphere) float cameraHeight = length(positionWC); float B = 2.0 * dot(positionWC, ray); float C = cameraHeight * cameraHeight - outerRadius * outerRadius; float det = max(0.0, B * B - 4.0 * C); float near = 0.5 * (-B - sqrt(det)); // Calculate the ray's starting position, then calculate its scattering offset start = positionWC + ray * near; far -= near; float startAngle = dot(ray, start) / outerRadius; float startDepth = exp(-1.0 / rayleighScaleDepth); startOffset = startDepth * scale(startAngle); } void calculateRayScatteringFromGround(in vec3 positionWC, in vec3 ray, in float atmosphereScale, in float innerRadius, out vec3 start, out float startOffset) { // Calculate the ray's starting position, then calculate its scattering offset float cameraHeight = length(positionWC); start = positionWC; float height = length(start); float depth = exp((atmosphereScale / rayleighScaleDepth ) * (innerRadius - cameraHeight)); float startAngle = dot(ray, start) / height; startOffset = depth*scale(startAngle); } czm_raySegment rayEllipsoidIntersection(czm_ray ray, vec3 inverseRadii) { vec3 o = inverseRadii * (czm_inverseView * vec4(ray.origin, 1.0)).xyz; vec3 d = inverseRadii * (czm_inverseView * vec4(ray.direction, 0.0)).xyz; float a = dot(d, d); float b = dot(d, o); float c = dot(o, o) - 1.0; float discriminant = b * b - a * c; if (discriminant < 0.0) { return czm_emptyRaySegment; } discriminant = sqrt(discriminant); float t1 = (-b - discriminant) / a; float t2 = (-b + discriminant) / a; if (t1 < 0.0 && t2 < 0.0) { return czm_emptyRaySegment; } if (t1 < 0.0 && t2 >= 0.0) { t1 = 0.0; } return czm_raySegment(t1, t2); } vec3 getAdjustedPosition(vec3 positionWC, float innerRadius) { // Adjust the camera position so that atmosphere color looks the same wherever the eye height is the same float cameraHeight = czm_eyeHeight + innerRadius; return normalize(positionWC) * cameraHeight; } vec3 getTranslucentPosition(vec3 positionWC, vec3 outerPositionWC, float innerRadius, out bool intersectsEllipsoid) { vec3 directionWC = normalize(outerPositionWC - positionWC); vec3 directionEC = czm_viewRotation * directionWC; czm_ray viewRay = czm_ray(vec3(0.0), directionEC); czm_raySegment raySegment = rayEllipsoidIntersection(viewRay, czm_ellipsoidInverseRadii); intersectsEllipsoid = raySegment.start >= 0.0; if (intersectsEllipsoid) { return positionWC + raySegment.stop * directionWC; } return getAdjustedPosition(positionWC, innerRadius); } void calculateMieColorAndRayleighColor(vec3 outerPositionWC, out vec3 mieColor, out vec3 rayleighColor) { // Unpack attributes float outerRadius = u_radiiAndDynamicAtmosphereColor.x; float innerRadius = u_radiiAndDynamicAtmosphereColor.y; #ifdef GLOBE_TRANSLUCENT bool intersectsEllipsoid = false; vec3 startPositionWC = getTranslucentPosition(czm_viewerPositionWC, outerPositionWC, innerRadius, intersectsEllipsoid); #else vec3 startPositionWC = getAdjustedPosition(czm_viewerPositionWC, innerRadius); #endif vec3 lightDirection = getLightDirection(startPositionWC); // Get the ray from the start position to the outer position and its length (which is the far point of the ray passing through the atmosphere) vec3 ray = outerPositionWC - startPositionWC; float far = length(ray); ray /= far; float atmosphereScale = 1.0 / (outerRadius - innerRadius); vec3 start; float startOffset; #ifdef SKY_FROM_SPACE #ifdef GLOBE_TRANSLUCENT if (intersectsEllipsoid) { calculateRayScatteringFromGround(startPositionWC, ray, atmosphereScale, innerRadius, start, startOffset); } else { calculateRayScatteringFromSpace(startPositionWC, ray, innerRadius, outerRadius, far, start, startOffset); } #else calculateRayScatteringFromSpace(startPositionWC, ray, innerRadius, outerRadius, far, start, startOffset); #endif #else calculateRayScatteringFromGround(startPositionWC, ray, atmosphereScale, innerRadius, start, startOffset); #endif // Initialize the scattering loop variables float sampleLength = far / fSamples; float scaledLength = sampleLength * atmosphereScale; vec3 sampleRay = ray * sampleLength; vec3 samplePoint = start + sampleRay * 0.5; // Now loop through the sample rays vec3 frontColor = vec3(0.0, 0.0, 0.0); for (int i = 0; i czm_epsilon7 ? hsb.z + u_hsbShift.z : 0.0; // brightness // Convert shifted hsb back to rgb rgb = czm_HSBToRGB(hsb); #endif float outerRadius = u_radiiAndDynamicAtmosphereColor.x; float innerRadius = u_radiiAndDynamicAtmosphereColor.y; float lightEnum = u_radiiAndDynamicAtmosphereColor.z; float cameraHeight = czm_eyeHeight + innerRadius; // Alter alpha based on how close the viewer is to the ground (1.0 = on ground, 0.0 = at edge of atmosphere) float atmosphereAlpha = clamp((outerRadius - cameraHeight) / (outerRadius - innerRadius), 0.0, 1.0); // Alter alpha based on time of day (0.0 = night , 1.0 = day) float nightAlpha = (lightEnum != 0.0) ? clamp(dot(normalize(positionWC), lightDirection), 0.0, 1.0) : 1.0; atmosphereAlpha *= pow(nightAlpha, 0.5); vec4 finalColor = vec4(rgb, mix(clamp(rgbExposure.b, 0.0, 1.0), 1.0, atmosphereAlpha) * smoothstep(0.0, 1.0, czm_morphTime)); if (mieColor.b > 1.0) { // Fade atmosphere below the ellipsoid. As the camera zooms further away from the ellipsoid draw // a larger atmosphere ring to cover empty space of lower LOD globe tiles. float strength = mieColor.b; float minDistance = outerRadius; float maxDistance = outerRadius * 3.0; float maxStrengthLerp = 1.0 - clamp((maxDistance - cameraHeight) / (maxDistance - minDistance), 0.0, 1.0); float maxStrength = mix(100.0, 10000.0, maxStrengthLerp); strength = min(strength, maxStrength); float alpha = 1.0 - (strength / maxStrength); finalColor.a = alpha; } return finalColor; }