/** * @license * Copyright (c) 2000-2005, Sean O'Neil (s_p_oneil@hotmail.com) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the project nor the names of its contributors may be * used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Modifications made by Cesium GS, Inc. */ //This file is automatically rebuilt by the Cesium build process. export default "/**\n\ * @license\n\ * Copyright (c) 2000-2005, Sean O'Neil (s_p_oneil@hotmail.com)\n\ * All rights reserved.\n\ *\n\ * Redistribution and use in source and binary forms, with or without\n\ * modification, are permitted provided that the following conditions\n\ * are met:\n\ *\n\ * * Redistributions of source code must retain the above copyright notice,\n\ * this list of conditions and the following disclaimer.\n\ * * Redistributions in binary form must reproduce the above copyright notice,\n\ * this list of conditions and the following disclaimer in the documentation\n\ * and/or other materials provided with the distribution.\n\ * * Neither the name of the project nor the names of its contributors may be\n\ * used to endorse or promote products derived from this software without\n\ * specific prior written permission.\n\ *\n\ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\"\n\ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\n\ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE\n\ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE\n\ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL\n\ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR\n\ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER\n\ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,\n\ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE\n\ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\n\ *\n\ * Modifications made by Cesium GS, Inc.\n\ */\n\ \n\ // Code: http://sponeil.net/\n\ // GPU Gems 2 Article: https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter16.html\n\ \n\ const float Kr = 0.0025;\n\ const float Kr4PI = Kr * 4.0 * czm_pi;\n\ const float Km = 0.0015;\n\ const float Km4PI = Km * 4.0 * czm_pi;\n\ const float ESun = 15.0;\n\ const float KmESun = Km * ESun;\n\ const float KrESun = Kr * ESun;\n\ const vec3 InvWavelength = vec3(\n\ 5.60204474633241, // Red = 1.0 / Math.pow(0.650, 4.0)\n\ 9.473284437923038, // Green = 1.0 / Math.pow(0.570, 4.0)\n\ 19.643802610477206); // Blue = 1.0 / Math.pow(0.475, 4.0)\n\ const float rayleighScaleDepth = 0.25;\n\ \n\ const int nSamples = 2;\n\ const float fSamples = 2.0;\n\ \n\ const float g = -0.95;\n\ const float g2 = g * g;\n\ \n\ #ifdef COLOR_CORRECT\n\ uniform vec3 u_hsbShift; // Hue, saturation, brightness\n\ #endif\n\ \n\ uniform vec3 u_radiiAndDynamicAtmosphereColor; // outer radius, inner radius, dynamic atmosphere color flag\n\ \n\ float scale(float cosAngle)\n\ {\n\ float x = 1.0 - cosAngle;\n\ return rayleighScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));\n\ }\n\ \n\ vec3 getLightDirection(vec3 positionWC)\n\ {\n\ float lightEnum = u_radiiAndDynamicAtmosphereColor.z;\n\ vec3 lightDirection =\n\ positionWC * float(lightEnum == 0.0) +\n\ czm_lightDirectionWC * float(lightEnum == 1.0) +\n\ czm_sunDirectionWC * float(lightEnum == 2.0);\n\ return normalize(lightDirection);\n\ }\n\ \n\ void calculateRayScatteringFromSpace(in vec3 positionWC, in vec3 ray, in float innerRadius, in float outerRadius, inout float far, out vec3 start, out float startOffset)\n\ {\n\ // Calculate the closest intersection of the ray with the outer atmosphere (which is the near point of the ray passing through the atmosphere)\n\ float cameraHeight = length(positionWC);\n\ float B = 2.0 * dot(positionWC, ray);\n\ float C = cameraHeight * cameraHeight - outerRadius * outerRadius;\n\ float det = max(0.0, B * B - 4.0 * C);\n\ float near = 0.5 * (-B - sqrt(det));\n\ \n\ // Calculate the ray's starting position, then calculate its scattering offset\n\ start = positionWC + ray * near;\n\ far -= near;\n\ float startAngle = dot(ray, start) / outerRadius;\n\ float startDepth = exp(-1.0 / rayleighScaleDepth);\n\ startOffset = startDepth * scale(startAngle);\n\ }\n\ \n\ void calculateRayScatteringFromGround(in vec3 positionWC, in vec3 ray, in float atmosphereScale, in float innerRadius, out vec3 start, out float startOffset)\n\ {\n\ // Calculate the ray's starting position, then calculate its scattering offset\n\ float cameraHeight = length(positionWC);\n\ start = positionWC;\n\ float height = length(start);\n\ float depth = exp((atmosphereScale / rayleighScaleDepth ) * (innerRadius - cameraHeight));\n\ float startAngle = dot(ray, start) / height;\n\ startOffset = depth*scale(startAngle);\n\ }\n\ \n\ czm_raySegment rayEllipsoidIntersection(czm_ray ray, vec3 inverseRadii)\n\ {\n\ vec3 o = inverseRadii * (czm_inverseView * vec4(ray.origin, 1.0)).xyz;\n\ vec3 d = inverseRadii * (czm_inverseView * vec4(ray.direction, 0.0)).xyz;\n\ \n\ float a = dot(d, d);\n\ float b = dot(d, o);\n\ float c = dot(o, o) - 1.0;\n\ float discriminant = b * b - a * c;\n\ if (discriminant < 0.0)\n\ {\n\ return czm_emptyRaySegment;\n\ }\n\ discriminant = sqrt(discriminant);\n\ float t1 = (-b - discriminant) / a;\n\ float t2 = (-b + discriminant) / a;\n\ \n\ if (t1 < 0.0 && t2 < 0.0)\n\ {\n\ return czm_emptyRaySegment;\n\ }\n\ \n\ if (t1 < 0.0 && t2 >= 0.0)\n\ {\n\ t1 = 0.0;\n\ }\n\ \n\ return czm_raySegment(t1, t2);\n\ }\n\ \n\ vec3 getAdjustedPosition(vec3 positionWC, float innerRadius)\n\ {\n\ // Adjust the camera position so that atmosphere color looks the same wherever the eye height is the same\n\ float cameraHeight = czm_eyeHeight + innerRadius;\n\ return normalize(positionWC) * cameraHeight;\n\ }\n\ \n\ vec3 getTranslucentPosition(vec3 positionWC, vec3 outerPositionWC, float innerRadius, out bool intersectsEllipsoid)\n\ {\n\ vec3 directionWC = normalize(outerPositionWC - positionWC);\n\ vec3 directionEC = czm_viewRotation * directionWC;\n\ czm_ray viewRay = czm_ray(vec3(0.0), directionEC);\n\ czm_raySegment raySegment = rayEllipsoidIntersection(viewRay, czm_ellipsoidInverseRadii);\n\ intersectsEllipsoid = raySegment.start >= 0.0;\n\ \n\ if (intersectsEllipsoid)\n\ {\n\ return positionWC + raySegment.stop * directionWC;\n\ }\n\ \n\ return getAdjustedPosition(positionWC, innerRadius);\n\ }\n\ \n\ void calculateMieColorAndRayleighColor(vec3 outerPositionWC, out vec3 mieColor, out vec3 rayleighColor)\n\ {\n\ // Unpack attributes\n\ float outerRadius = u_radiiAndDynamicAtmosphereColor.x;\n\ float innerRadius = u_radiiAndDynamicAtmosphereColor.y;\n\ \n\ #ifdef GLOBE_TRANSLUCENT\n\ bool intersectsEllipsoid = false;\n\ vec3 startPositionWC = getTranslucentPosition(czm_viewerPositionWC, outerPositionWC, innerRadius, intersectsEllipsoid);\n\ #else\n\ vec3 startPositionWC = getAdjustedPosition(czm_viewerPositionWC, innerRadius);\n\ #endif\n\ \n\ vec3 lightDirection = getLightDirection(startPositionWC);\n\ \n\ // Get the ray from the start position to the outer position and its length (which is the far point of the ray passing through the atmosphere)\n\ vec3 ray = outerPositionWC - startPositionWC;\n\ float far = length(ray);\n\ ray /= far;\n\ \n\ float atmosphereScale = 1.0 / (outerRadius - innerRadius);\n\ \n\ vec3 start;\n\ float startOffset;\n\ \n\ #ifdef SKY_FROM_SPACE\n\ #ifdef GLOBE_TRANSLUCENT\n\ if (intersectsEllipsoid)\n\ {\n\ calculateRayScatteringFromGround(startPositionWC, ray, atmosphereScale, innerRadius, start, startOffset);\n\ }\n\ else\n\ {\n\ calculateRayScatteringFromSpace(startPositionWC, ray, innerRadius, outerRadius, far, start, startOffset);\n\ }\n\ #else\n\ calculateRayScatteringFromSpace(startPositionWC, ray, innerRadius, outerRadius, far, start, startOffset);\n\ #endif\n\ #else\n\ calculateRayScatteringFromGround(startPositionWC, ray, atmosphereScale, innerRadius, start, startOffset);\n\ #endif\n\ \n\ // Initialize the scattering loop variables\n\ float sampleLength = far / fSamples;\n\ float scaledLength = sampleLength * atmosphereScale;\n\ vec3 sampleRay = ray * sampleLength;\n\ vec3 samplePoint = start + sampleRay * 0.5;\n\ \n\ // Now loop through the sample rays\n\ vec3 frontColor = vec3(0.0, 0.0, 0.0);\n\ \n\ for (int i = 0; i czm_epsilon7 ? hsb.z + u_hsbShift.z : 0.0; // brightness\n\ // Convert shifted hsb back to rgb\n\ rgb = czm_HSBToRGB(hsb);\n\ #endif\n\ \n\ float outerRadius = u_radiiAndDynamicAtmosphereColor.x;\n\ float innerRadius = u_radiiAndDynamicAtmosphereColor.y;\n\ float lightEnum = u_radiiAndDynamicAtmosphereColor.z;\n\ \n\ float cameraHeight = czm_eyeHeight + innerRadius;\n\ \n\ // Alter alpha based on how close the viewer is to the ground (1.0 = on ground, 0.0 = at edge of atmosphere)\n\ float atmosphereAlpha = clamp((outerRadius - cameraHeight) / (outerRadius - innerRadius), 0.0, 1.0);\n\ \n\ // Alter alpha based on time of day (0.0 = night , 1.0 = day)\n\ float nightAlpha = (lightEnum != 0.0) ? clamp(dot(normalize(positionWC), lightDirection), 0.0, 1.0) : 1.0;\n\ atmosphereAlpha *= pow(nightAlpha, 0.5);\n\ \n\ vec4 finalColor = vec4(rgb, mix(clamp(rgbExposure.b, 0.0, 1.0), 1.0, atmosphereAlpha) * smoothstep(0.0, 1.0, czm_morphTime));\n\ \n\ if (mieColor.b > 1.0)\n\ {\n\ // Fade atmosphere below the ellipsoid. As the camera zooms further away from the ellipsoid draw\n\ // a larger atmosphere ring to cover empty space of lower LOD globe tiles.\n\ float strength = mieColor.b;\n\ float minDistance = outerRadius;\n\ float maxDistance = outerRadius * 3.0;\n\ float maxStrengthLerp = 1.0 - clamp((maxDistance - cameraHeight) / (maxDistance - minDistance), 0.0, 1.0);\n\ float maxStrength = mix(100.0, 10000.0, maxStrengthLerp);\n\ strength = min(strength, maxStrength);\n\ float alpha = 1.0 - (strength / maxStrength);\n\ finalColor.a = alpha;\n\ }\n\ \n\ return finalColor;\n\ }\n\ ";