You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1033 lines
28 KiB
JavaScript
1033 lines
28 KiB
JavaScript
import Cartesian3 from "./Cartesian3.js";
|
|
import Cartographic from "./Cartographic.js";
|
|
import defaultValue from "./defaultValue.js";
|
|
import defined from "./defined.js";
|
|
import DeveloperError from "./DeveloperError.js";
|
|
import Interval from "./Interval.js";
|
|
import CesiumMath from "./Math.js";
|
|
import Matrix3 from "./Matrix3.js";
|
|
import QuadraticRealPolynomial from "./QuadraticRealPolynomial.js";
|
|
import QuarticRealPolynomial from "./QuarticRealPolynomial.js";
|
|
import Ray from "./Ray.js";
|
|
|
|
/**
|
|
* Functions for computing the intersection between geometries such as rays, planes, triangles, and ellipsoids.
|
|
*
|
|
* @namespace IntersectionTests
|
|
*/
|
|
var IntersectionTests = {};
|
|
|
|
/**
|
|
* Computes the intersection of a ray and a plane.
|
|
*
|
|
* @param {Ray} ray The ray.
|
|
* @param {Plane} plane The plane.
|
|
* @param {Cartesian3} [result] The object onto which to store the result.
|
|
* @returns {Cartesian3} The intersection point or undefined if there is no intersections.
|
|
*/
|
|
IntersectionTests.rayPlane = function (ray, plane, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!defined(ray)) {
|
|
throw new DeveloperError("ray is required.");
|
|
}
|
|
if (!defined(plane)) {
|
|
throw new DeveloperError("plane is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
if (!defined(result)) {
|
|
result = new Cartesian3();
|
|
}
|
|
|
|
var origin = ray.origin;
|
|
var direction = ray.direction;
|
|
var normal = plane.normal;
|
|
var denominator = Cartesian3.dot(normal, direction);
|
|
|
|
if (Math.abs(denominator) < CesiumMath.EPSILON15) {
|
|
// Ray is parallel to plane. The ray may be in the polygon's plane.
|
|
return undefined;
|
|
}
|
|
|
|
var t = (-plane.distance - Cartesian3.dot(normal, origin)) / denominator;
|
|
|
|
if (t < 0) {
|
|
return undefined;
|
|
}
|
|
|
|
result = Cartesian3.multiplyByScalar(direction, t, result);
|
|
return Cartesian3.add(origin, result, result);
|
|
};
|
|
|
|
var scratchEdge0 = new Cartesian3();
|
|
var scratchEdge1 = new Cartesian3();
|
|
var scratchPVec = new Cartesian3();
|
|
var scratchTVec = new Cartesian3();
|
|
var scratchQVec = new Cartesian3();
|
|
|
|
/**
|
|
* Computes the intersection of a ray and a triangle as a parametric distance along the input ray. The result is negative when the triangle is behind the ray.
|
|
*
|
|
* Implements {@link https://cadxfem.org/inf/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf|
|
|
* Fast Minimum Storage Ray/Triangle Intersection} by Tomas Moller and Ben Trumbore.
|
|
*
|
|
* @memberof IntersectionTests
|
|
*
|
|
* @param {Ray} ray The ray.
|
|
* @param {Cartesian3} p0 The first vertex of the triangle.
|
|
* @param {Cartesian3} p1 The second vertex of the triangle.
|
|
* @param {Cartesian3} p2 The third vertex of the triangle.
|
|
* @param {Boolean} [cullBackFaces=false] If <code>true</code>, will only compute an intersection with the front face of the triangle
|
|
* and return undefined for intersections with the back face.
|
|
* @returns {Number} The intersection as a parametric distance along the ray, or undefined if there is no intersection.
|
|
*/
|
|
IntersectionTests.rayTriangleParametric = function (
|
|
ray,
|
|
p0,
|
|
p1,
|
|
p2,
|
|
cullBackFaces
|
|
) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!defined(ray)) {
|
|
throw new DeveloperError("ray is required.");
|
|
}
|
|
if (!defined(p0)) {
|
|
throw new DeveloperError("p0 is required.");
|
|
}
|
|
if (!defined(p1)) {
|
|
throw new DeveloperError("p1 is required.");
|
|
}
|
|
if (!defined(p2)) {
|
|
throw new DeveloperError("p2 is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
cullBackFaces = defaultValue(cullBackFaces, false);
|
|
|
|
var origin = ray.origin;
|
|
var direction = ray.direction;
|
|
|
|
var edge0 = Cartesian3.subtract(p1, p0, scratchEdge0);
|
|
var edge1 = Cartesian3.subtract(p2, p0, scratchEdge1);
|
|
|
|
var p = Cartesian3.cross(direction, edge1, scratchPVec);
|
|
var det = Cartesian3.dot(edge0, p);
|
|
|
|
var tvec;
|
|
var q;
|
|
|
|
var u;
|
|
var v;
|
|
var t;
|
|
|
|
if (cullBackFaces) {
|
|
if (det < CesiumMath.EPSILON6) {
|
|
return undefined;
|
|
}
|
|
|
|
tvec = Cartesian3.subtract(origin, p0, scratchTVec);
|
|
u = Cartesian3.dot(tvec, p);
|
|
if (u < 0.0 || u > det) {
|
|
return undefined;
|
|
}
|
|
|
|
q = Cartesian3.cross(tvec, edge0, scratchQVec);
|
|
|
|
v = Cartesian3.dot(direction, q);
|
|
if (v < 0.0 || u + v > det) {
|
|
return undefined;
|
|
}
|
|
|
|
t = Cartesian3.dot(edge1, q) / det;
|
|
} else {
|
|
if (Math.abs(det) < CesiumMath.EPSILON6) {
|
|
return undefined;
|
|
}
|
|
var invDet = 1.0 / det;
|
|
|
|
tvec = Cartesian3.subtract(origin, p0, scratchTVec);
|
|
u = Cartesian3.dot(tvec, p) * invDet;
|
|
if (u < 0.0 || u > 1.0) {
|
|
return undefined;
|
|
}
|
|
|
|
q = Cartesian3.cross(tvec, edge0, scratchQVec);
|
|
|
|
v = Cartesian3.dot(direction, q) * invDet;
|
|
if (v < 0.0 || u + v > 1.0) {
|
|
return undefined;
|
|
}
|
|
|
|
t = Cartesian3.dot(edge1, q) * invDet;
|
|
}
|
|
|
|
return t;
|
|
};
|
|
|
|
/**
|
|
* Computes the intersection of a ray and a triangle as a Cartesian3 coordinate.
|
|
*
|
|
* Implements {@link https://cadxfem.org/inf/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf|
|
|
* Fast Minimum Storage Ray/Triangle Intersection} by Tomas Moller and Ben Trumbore.
|
|
*
|
|
* @memberof IntersectionTests
|
|
*
|
|
* @param {Ray} ray The ray.
|
|
* @param {Cartesian3} p0 The first vertex of the triangle.
|
|
* @param {Cartesian3} p1 The second vertex of the triangle.
|
|
* @param {Cartesian3} p2 The third vertex of the triangle.
|
|
* @param {Boolean} [cullBackFaces=false] If <code>true</code>, will only compute an intersection with the front face of the triangle
|
|
* and return undefined for intersections with the back face.
|
|
* @param {Cartesian3} [result] The <code>Cartesian3</code> onto which to store the result.
|
|
* @returns {Cartesian3} The intersection point or undefined if there is no intersections.
|
|
*/
|
|
IntersectionTests.rayTriangle = function (
|
|
ray,
|
|
p0,
|
|
p1,
|
|
p2,
|
|
cullBackFaces,
|
|
result
|
|
) {
|
|
var t = IntersectionTests.rayTriangleParametric(
|
|
ray,
|
|
p0,
|
|
p1,
|
|
p2,
|
|
cullBackFaces
|
|
);
|
|
if (!defined(t) || t < 0.0) {
|
|
return undefined;
|
|
}
|
|
|
|
if (!defined(result)) {
|
|
result = new Cartesian3();
|
|
}
|
|
|
|
Cartesian3.multiplyByScalar(ray.direction, t, result);
|
|
return Cartesian3.add(ray.origin, result, result);
|
|
};
|
|
|
|
var scratchLineSegmentTriangleRay = new Ray();
|
|
|
|
/**
|
|
* Computes the intersection of a line segment and a triangle.
|
|
* @memberof IntersectionTests
|
|
*
|
|
* @param {Cartesian3} v0 The an end point of the line segment.
|
|
* @param {Cartesian3} v1 The other end point of the line segment.
|
|
* @param {Cartesian3} p0 The first vertex of the triangle.
|
|
* @param {Cartesian3} p1 The second vertex of the triangle.
|
|
* @param {Cartesian3} p2 The third vertex of the triangle.
|
|
* @param {Boolean} [cullBackFaces=false] If <code>true</code>, will only compute an intersection with the front face of the triangle
|
|
* and return undefined for intersections with the back face.
|
|
* @param {Cartesian3} [result] The <code>Cartesian3</code> onto which to store the result.
|
|
* @returns {Cartesian3} The intersection point or undefined if there is no intersections.
|
|
*/
|
|
IntersectionTests.lineSegmentTriangle = function (
|
|
v0,
|
|
v1,
|
|
p0,
|
|
p1,
|
|
p2,
|
|
cullBackFaces,
|
|
result
|
|
) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!defined(v0)) {
|
|
throw new DeveloperError("v0 is required.");
|
|
}
|
|
if (!defined(v1)) {
|
|
throw new DeveloperError("v1 is required.");
|
|
}
|
|
if (!defined(p0)) {
|
|
throw new DeveloperError("p0 is required.");
|
|
}
|
|
if (!defined(p1)) {
|
|
throw new DeveloperError("p1 is required.");
|
|
}
|
|
if (!defined(p2)) {
|
|
throw new DeveloperError("p2 is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
var ray = scratchLineSegmentTriangleRay;
|
|
Cartesian3.clone(v0, ray.origin);
|
|
Cartesian3.subtract(v1, v0, ray.direction);
|
|
Cartesian3.normalize(ray.direction, ray.direction);
|
|
|
|
var t = IntersectionTests.rayTriangleParametric(
|
|
ray,
|
|
p0,
|
|
p1,
|
|
p2,
|
|
cullBackFaces
|
|
);
|
|
if (!defined(t) || t < 0.0 || t > Cartesian3.distance(v0, v1)) {
|
|
return undefined;
|
|
}
|
|
|
|
if (!defined(result)) {
|
|
result = new Cartesian3();
|
|
}
|
|
|
|
Cartesian3.multiplyByScalar(ray.direction, t, result);
|
|
return Cartesian3.add(ray.origin, result, result);
|
|
};
|
|
|
|
function solveQuadratic(a, b, c, result) {
|
|
var det = b * b - 4.0 * a * c;
|
|
if (det < 0.0) {
|
|
return undefined;
|
|
} else if (det > 0.0) {
|
|
var denom = 1.0 / (2.0 * a);
|
|
var disc = Math.sqrt(det);
|
|
var root0 = (-b + disc) * denom;
|
|
var root1 = (-b - disc) * denom;
|
|
|
|
if (root0 < root1) {
|
|
result.root0 = root0;
|
|
result.root1 = root1;
|
|
} else {
|
|
result.root0 = root1;
|
|
result.root1 = root0;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
var root = -b / (2.0 * a);
|
|
if (root === 0.0) {
|
|
return undefined;
|
|
}
|
|
|
|
result.root0 = result.root1 = root;
|
|
return result;
|
|
}
|
|
|
|
var raySphereRoots = {
|
|
root0: 0.0,
|
|
root1: 0.0,
|
|
};
|
|
|
|
function raySphere(ray, sphere, result) {
|
|
if (!defined(result)) {
|
|
result = new Interval();
|
|
}
|
|
|
|
var origin = ray.origin;
|
|
var direction = ray.direction;
|
|
|
|
var center = sphere.center;
|
|
var radiusSquared = sphere.radius * sphere.radius;
|
|
|
|
var diff = Cartesian3.subtract(origin, center, scratchPVec);
|
|
|
|
var a = Cartesian3.dot(direction, direction);
|
|
var b = 2.0 * Cartesian3.dot(direction, diff);
|
|
var c = Cartesian3.magnitudeSquared(diff) - radiusSquared;
|
|
|
|
var roots = solveQuadratic(a, b, c, raySphereRoots);
|
|
if (!defined(roots)) {
|
|
return undefined;
|
|
}
|
|
|
|
result.start = roots.root0;
|
|
result.stop = roots.root1;
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Computes the intersection points of a ray with a sphere.
|
|
* @memberof IntersectionTests
|
|
*
|
|
* @param {Ray} ray The ray.
|
|
* @param {BoundingSphere} sphere The sphere.
|
|
* @param {Interval} [result] The result onto which to store the result.
|
|
* @returns {Interval} The interval containing scalar points along the ray or undefined if there are no intersections.
|
|
*/
|
|
IntersectionTests.raySphere = function (ray, sphere, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!defined(ray)) {
|
|
throw new DeveloperError("ray is required.");
|
|
}
|
|
if (!defined(sphere)) {
|
|
throw new DeveloperError("sphere is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
result = raySphere(ray, sphere, result);
|
|
if (!defined(result) || result.stop < 0.0) {
|
|
return undefined;
|
|
}
|
|
|
|
result.start = Math.max(result.start, 0.0);
|
|
return result;
|
|
};
|
|
|
|
var scratchLineSegmentRay = new Ray();
|
|
|
|
/**
|
|
* Computes the intersection points of a line segment with a sphere.
|
|
* @memberof IntersectionTests
|
|
*
|
|
* @param {Cartesian3} p0 An end point of the line segment.
|
|
* @param {Cartesian3} p1 The other end point of the line segment.
|
|
* @param {BoundingSphere} sphere The sphere.
|
|
* @param {Interval} [result] The result onto which to store the result.
|
|
* @returns {Interval} The interval containing scalar points along the ray or undefined if there are no intersections.
|
|
*/
|
|
IntersectionTests.lineSegmentSphere = function (p0, p1, sphere, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!defined(p0)) {
|
|
throw new DeveloperError("p0 is required.");
|
|
}
|
|
if (!defined(p1)) {
|
|
throw new DeveloperError("p1 is required.");
|
|
}
|
|
if (!defined(sphere)) {
|
|
throw new DeveloperError("sphere is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
var ray = scratchLineSegmentRay;
|
|
Cartesian3.clone(p0, ray.origin);
|
|
var direction = Cartesian3.subtract(p1, p0, ray.direction);
|
|
|
|
var maxT = Cartesian3.magnitude(direction);
|
|
Cartesian3.normalize(direction, direction);
|
|
|
|
result = raySphere(ray, sphere, result);
|
|
if (!defined(result) || result.stop < 0.0 || result.start > maxT) {
|
|
return undefined;
|
|
}
|
|
|
|
result.start = Math.max(result.start, 0.0);
|
|
result.stop = Math.min(result.stop, maxT);
|
|
return result;
|
|
};
|
|
|
|
var scratchQ = new Cartesian3();
|
|
var scratchW = new Cartesian3();
|
|
|
|
/**
|
|
* Computes the intersection points of a ray with an ellipsoid.
|
|
*
|
|
* @param {Ray} ray The ray.
|
|
* @param {Ellipsoid} ellipsoid The ellipsoid.
|
|
* @returns {Interval} The interval containing scalar points along the ray or undefined if there are no intersections.
|
|
*/
|
|
IntersectionTests.rayEllipsoid = function (ray, ellipsoid) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!defined(ray)) {
|
|
throw new DeveloperError("ray is required.");
|
|
}
|
|
if (!defined(ellipsoid)) {
|
|
throw new DeveloperError("ellipsoid is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
var inverseRadii = ellipsoid.oneOverRadii;
|
|
var q = Cartesian3.multiplyComponents(inverseRadii, ray.origin, scratchQ);
|
|
var w = Cartesian3.multiplyComponents(inverseRadii, ray.direction, scratchW);
|
|
|
|
var q2 = Cartesian3.magnitudeSquared(q);
|
|
var qw = Cartesian3.dot(q, w);
|
|
|
|
var difference, w2, product, discriminant, temp;
|
|
|
|
if (q2 > 1.0) {
|
|
// Outside ellipsoid.
|
|
if (qw >= 0.0) {
|
|
// Looking outward or tangent (0 intersections).
|
|
return undefined;
|
|
}
|
|
|
|
// qw < 0.0.
|
|
var qw2 = qw * qw;
|
|
difference = q2 - 1.0; // Positively valued.
|
|
w2 = Cartesian3.magnitudeSquared(w);
|
|
product = w2 * difference;
|
|
|
|
if (qw2 < product) {
|
|
// Imaginary roots (0 intersections).
|
|
return undefined;
|
|
} else if (qw2 > product) {
|
|
// Distinct roots (2 intersections).
|
|
discriminant = qw * qw - product;
|
|
temp = -qw + Math.sqrt(discriminant); // Avoid cancellation.
|
|
var root0 = temp / w2;
|
|
var root1 = difference / temp;
|
|
if (root0 < root1) {
|
|
return new Interval(root0, root1);
|
|
}
|
|
|
|
return {
|
|
start: root1,
|
|
stop: root0,
|
|
};
|
|
}
|
|
// qw2 == product. Repeated roots (2 intersections).
|
|
var root = Math.sqrt(difference / w2);
|
|
return new Interval(root, root);
|
|
} else if (q2 < 1.0) {
|
|
// Inside ellipsoid (2 intersections).
|
|
difference = q2 - 1.0; // Negatively valued.
|
|
w2 = Cartesian3.magnitudeSquared(w);
|
|
product = w2 * difference; // Negatively valued.
|
|
|
|
discriminant = qw * qw - product;
|
|
temp = -qw + Math.sqrt(discriminant); // Positively valued.
|
|
return new Interval(0.0, temp / w2);
|
|
}
|
|
// q2 == 1.0. On ellipsoid.
|
|
if (qw < 0.0) {
|
|
// Looking inward.
|
|
w2 = Cartesian3.magnitudeSquared(w);
|
|
return new Interval(0.0, -qw / w2);
|
|
}
|
|
|
|
// qw >= 0.0. Looking outward or tangent.
|
|
return undefined;
|
|
};
|
|
|
|
function addWithCancellationCheck(left, right, tolerance) {
|
|
var difference = left + right;
|
|
if (
|
|
CesiumMath.sign(left) !== CesiumMath.sign(right) &&
|
|
Math.abs(difference / Math.max(Math.abs(left), Math.abs(right))) < tolerance
|
|
) {
|
|
return 0.0;
|
|
}
|
|
|
|
return difference;
|
|
}
|
|
|
|
function quadraticVectorExpression(A, b, c, x, w) {
|
|
var xSquared = x * x;
|
|
var wSquared = w * w;
|
|
|
|
var l2 = (A[Matrix3.COLUMN1ROW1] - A[Matrix3.COLUMN2ROW2]) * wSquared;
|
|
var l1 =
|
|
w *
|
|
(x *
|
|
addWithCancellationCheck(
|
|
A[Matrix3.COLUMN1ROW0],
|
|
A[Matrix3.COLUMN0ROW1],
|
|
CesiumMath.EPSILON15
|
|
) +
|
|
b.y);
|
|
var l0 =
|
|
A[Matrix3.COLUMN0ROW0] * xSquared +
|
|
A[Matrix3.COLUMN2ROW2] * wSquared +
|
|
x * b.x +
|
|
c;
|
|
|
|
var r1 =
|
|
wSquared *
|
|
addWithCancellationCheck(
|
|
A[Matrix3.COLUMN2ROW1],
|
|
A[Matrix3.COLUMN1ROW2],
|
|
CesiumMath.EPSILON15
|
|
);
|
|
var r0 =
|
|
w *
|
|
(x *
|
|
addWithCancellationCheck(A[Matrix3.COLUMN2ROW0], A[Matrix3.COLUMN0ROW2]) +
|
|
b.z);
|
|
|
|
var cosines;
|
|
var solutions = [];
|
|
if (r0 === 0.0 && r1 === 0.0) {
|
|
cosines = QuadraticRealPolynomial.computeRealRoots(l2, l1, l0);
|
|
if (cosines.length === 0) {
|
|
return solutions;
|
|
}
|
|
|
|
var cosine0 = cosines[0];
|
|
var sine0 = Math.sqrt(Math.max(1.0 - cosine0 * cosine0, 0.0));
|
|
solutions.push(new Cartesian3(x, w * cosine0, w * -sine0));
|
|
solutions.push(new Cartesian3(x, w * cosine0, w * sine0));
|
|
|
|
if (cosines.length === 2) {
|
|
var cosine1 = cosines[1];
|
|
var sine1 = Math.sqrt(Math.max(1.0 - cosine1 * cosine1, 0.0));
|
|
solutions.push(new Cartesian3(x, w * cosine1, w * -sine1));
|
|
solutions.push(new Cartesian3(x, w * cosine1, w * sine1));
|
|
}
|
|
|
|
return solutions;
|
|
}
|
|
|
|
var r0Squared = r0 * r0;
|
|
var r1Squared = r1 * r1;
|
|
var l2Squared = l2 * l2;
|
|
var r0r1 = r0 * r1;
|
|
|
|
var c4 = l2Squared + r1Squared;
|
|
var c3 = 2.0 * (l1 * l2 + r0r1);
|
|
var c2 = 2.0 * l0 * l2 + l1 * l1 - r1Squared + r0Squared;
|
|
var c1 = 2.0 * (l0 * l1 - r0r1);
|
|
var c0 = l0 * l0 - r0Squared;
|
|
|
|
if (c4 === 0.0 && c3 === 0.0 && c2 === 0.0 && c1 === 0.0) {
|
|
return solutions;
|
|
}
|
|
|
|
cosines = QuarticRealPolynomial.computeRealRoots(c4, c3, c2, c1, c0);
|
|
var length = cosines.length;
|
|
if (length === 0) {
|
|
return solutions;
|
|
}
|
|
|
|
for (var i = 0; i < length; ++i) {
|
|
var cosine = cosines[i];
|
|
var cosineSquared = cosine * cosine;
|
|
var sineSquared = Math.max(1.0 - cosineSquared, 0.0);
|
|
var sine = Math.sqrt(sineSquared);
|
|
|
|
//var left = l2 * cosineSquared + l1 * cosine + l0;
|
|
var left;
|
|
if (CesiumMath.sign(l2) === CesiumMath.sign(l0)) {
|
|
left = addWithCancellationCheck(
|
|
l2 * cosineSquared + l0,
|
|
l1 * cosine,
|
|
CesiumMath.EPSILON12
|
|
);
|
|
} else if (CesiumMath.sign(l0) === CesiumMath.sign(l1 * cosine)) {
|
|
left = addWithCancellationCheck(
|
|
l2 * cosineSquared,
|
|
l1 * cosine + l0,
|
|
CesiumMath.EPSILON12
|
|
);
|
|
} else {
|
|
left = addWithCancellationCheck(
|
|
l2 * cosineSquared + l1 * cosine,
|
|
l0,
|
|
CesiumMath.EPSILON12
|
|
);
|
|
}
|
|
|
|
var right = addWithCancellationCheck(r1 * cosine, r0, CesiumMath.EPSILON15);
|
|
var product = left * right;
|
|
|
|
if (product < 0.0) {
|
|
solutions.push(new Cartesian3(x, w * cosine, w * sine));
|
|
} else if (product > 0.0) {
|
|
solutions.push(new Cartesian3(x, w * cosine, w * -sine));
|
|
} else if (sine !== 0.0) {
|
|
solutions.push(new Cartesian3(x, w * cosine, w * -sine));
|
|
solutions.push(new Cartesian3(x, w * cosine, w * sine));
|
|
++i;
|
|
} else {
|
|
solutions.push(new Cartesian3(x, w * cosine, w * sine));
|
|
}
|
|
}
|
|
|
|
return solutions;
|
|
}
|
|
|
|
var firstAxisScratch = new Cartesian3();
|
|
var secondAxisScratch = new Cartesian3();
|
|
var thirdAxisScratch = new Cartesian3();
|
|
var referenceScratch = new Cartesian3();
|
|
var bCart = new Cartesian3();
|
|
var bScratch = new Matrix3();
|
|
var btScratch = new Matrix3();
|
|
var diScratch = new Matrix3();
|
|
var dScratch = new Matrix3();
|
|
var cScratch = new Matrix3();
|
|
var tempMatrix = new Matrix3();
|
|
var aScratch = new Matrix3();
|
|
var sScratch = new Cartesian3();
|
|
var closestScratch = new Cartesian3();
|
|
var surfPointScratch = new Cartographic();
|
|
|
|
/**
|
|
* Provides the point along the ray which is nearest to the ellipsoid.
|
|
*
|
|
* @param {Ray} ray The ray.
|
|
* @param {Ellipsoid} ellipsoid The ellipsoid.
|
|
* @returns {Cartesian3} The nearest planetodetic point on the ray.
|
|
*/
|
|
IntersectionTests.grazingAltitudeLocation = function (ray, ellipsoid) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!defined(ray)) {
|
|
throw new DeveloperError("ray is required.");
|
|
}
|
|
if (!defined(ellipsoid)) {
|
|
throw new DeveloperError("ellipsoid is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
var position = ray.origin;
|
|
var direction = ray.direction;
|
|
|
|
if (!Cartesian3.equals(position, Cartesian3.ZERO)) {
|
|
var normal = ellipsoid.geodeticSurfaceNormal(position, firstAxisScratch);
|
|
if (Cartesian3.dot(direction, normal) >= 0.0) {
|
|
// The location provided is the closest point in altitude
|
|
return position;
|
|
}
|
|
}
|
|
|
|
var intersects = defined(this.rayEllipsoid(ray, ellipsoid));
|
|
|
|
// Compute the scaled direction vector.
|
|
var f = ellipsoid.transformPositionToScaledSpace(direction, firstAxisScratch);
|
|
|
|
// Constructs a basis from the unit scaled direction vector. Construct its rotation and transpose.
|
|
var firstAxis = Cartesian3.normalize(f, f);
|
|
var reference = Cartesian3.mostOrthogonalAxis(f, referenceScratch);
|
|
var secondAxis = Cartesian3.normalize(
|
|
Cartesian3.cross(reference, firstAxis, secondAxisScratch),
|
|
secondAxisScratch
|
|
);
|
|
var thirdAxis = Cartesian3.normalize(
|
|
Cartesian3.cross(firstAxis, secondAxis, thirdAxisScratch),
|
|
thirdAxisScratch
|
|
);
|
|
var B = bScratch;
|
|
B[0] = firstAxis.x;
|
|
B[1] = firstAxis.y;
|
|
B[2] = firstAxis.z;
|
|
B[3] = secondAxis.x;
|
|
B[4] = secondAxis.y;
|
|
B[5] = secondAxis.z;
|
|
B[6] = thirdAxis.x;
|
|
B[7] = thirdAxis.y;
|
|
B[8] = thirdAxis.z;
|
|
|
|
var B_T = Matrix3.transpose(B, btScratch);
|
|
|
|
// Get the scaling matrix and its inverse.
|
|
var D_I = Matrix3.fromScale(ellipsoid.radii, diScratch);
|
|
var D = Matrix3.fromScale(ellipsoid.oneOverRadii, dScratch);
|
|
|
|
var C = cScratch;
|
|
C[0] = 0.0;
|
|
C[1] = -direction.z;
|
|
C[2] = direction.y;
|
|
C[3] = direction.z;
|
|
C[4] = 0.0;
|
|
C[5] = -direction.x;
|
|
C[6] = -direction.y;
|
|
C[7] = direction.x;
|
|
C[8] = 0.0;
|
|
|
|
var temp = Matrix3.multiply(
|
|
Matrix3.multiply(B_T, D, tempMatrix),
|
|
C,
|
|
tempMatrix
|
|
);
|
|
var A = Matrix3.multiply(Matrix3.multiply(temp, D_I, aScratch), B, aScratch);
|
|
var b = Matrix3.multiplyByVector(temp, position, bCart);
|
|
|
|
// Solve for the solutions to the expression in standard form:
|
|
var solutions = quadraticVectorExpression(
|
|
A,
|
|
Cartesian3.negate(b, firstAxisScratch),
|
|
0.0,
|
|
0.0,
|
|
1.0
|
|
);
|
|
|
|
var s;
|
|
var altitude;
|
|
var length = solutions.length;
|
|
if (length > 0) {
|
|
var closest = Cartesian3.clone(Cartesian3.ZERO, closestScratch);
|
|
var maximumValue = Number.NEGATIVE_INFINITY;
|
|
|
|
for (var i = 0; i < length; ++i) {
|
|
s = Matrix3.multiplyByVector(
|
|
D_I,
|
|
Matrix3.multiplyByVector(B, solutions[i], sScratch),
|
|
sScratch
|
|
);
|
|
var v = Cartesian3.normalize(
|
|
Cartesian3.subtract(s, position, referenceScratch),
|
|
referenceScratch
|
|
);
|
|
var dotProduct = Cartesian3.dot(v, direction);
|
|
|
|
if (dotProduct > maximumValue) {
|
|
maximumValue = dotProduct;
|
|
closest = Cartesian3.clone(s, closest);
|
|
}
|
|
}
|
|
|
|
var surfacePoint = ellipsoid.cartesianToCartographic(
|
|
closest,
|
|
surfPointScratch
|
|
);
|
|
maximumValue = CesiumMath.clamp(maximumValue, 0.0, 1.0);
|
|
altitude =
|
|
Cartesian3.magnitude(
|
|
Cartesian3.subtract(closest, position, referenceScratch)
|
|
) * Math.sqrt(1.0 - maximumValue * maximumValue);
|
|
altitude = intersects ? -altitude : altitude;
|
|
surfacePoint.height = altitude;
|
|
return ellipsoid.cartographicToCartesian(surfacePoint, new Cartesian3());
|
|
}
|
|
|
|
return undefined;
|
|
};
|
|
|
|
var lineSegmentPlaneDifference = new Cartesian3();
|
|
|
|
/**
|
|
* Computes the intersection of a line segment and a plane.
|
|
*
|
|
* @param {Cartesian3} endPoint0 An end point of the line segment.
|
|
* @param {Cartesian3} endPoint1 The other end point of the line segment.
|
|
* @param {Plane} plane The plane.
|
|
* @param {Cartesian3} [result] The object onto which to store the result.
|
|
* @returns {Cartesian3} The intersection point or undefined if there is no intersection.
|
|
*
|
|
* @example
|
|
* var origin = Cesium.Cartesian3.fromDegrees(-75.59777, 40.03883);
|
|
* var normal = ellipsoid.geodeticSurfaceNormal(origin);
|
|
* var plane = Cesium.Plane.fromPointNormal(origin, normal);
|
|
*
|
|
* var p0 = new Cesium.Cartesian3(...);
|
|
* var p1 = new Cesium.Cartesian3(...);
|
|
*
|
|
* // find the intersection of the line segment from p0 to p1 and the tangent plane at origin.
|
|
* var intersection = Cesium.IntersectionTests.lineSegmentPlane(p0, p1, plane);
|
|
*/
|
|
IntersectionTests.lineSegmentPlane = function (
|
|
endPoint0,
|
|
endPoint1,
|
|
plane,
|
|
result
|
|
) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!defined(endPoint0)) {
|
|
throw new DeveloperError("endPoint0 is required.");
|
|
}
|
|
if (!defined(endPoint1)) {
|
|
throw new DeveloperError("endPoint1 is required.");
|
|
}
|
|
if (!defined(plane)) {
|
|
throw new DeveloperError("plane is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
if (!defined(result)) {
|
|
result = new Cartesian3();
|
|
}
|
|
|
|
var difference = Cartesian3.subtract(
|
|
endPoint1,
|
|
endPoint0,
|
|
lineSegmentPlaneDifference
|
|
);
|
|
var normal = plane.normal;
|
|
var nDotDiff = Cartesian3.dot(normal, difference);
|
|
|
|
// check if the segment and plane are parallel
|
|
if (Math.abs(nDotDiff) < CesiumMath.EPSILON6) {
|
|
return undefined;
|
|
}
|
|
|
|
var nDotP0 = Cartesian3.dot(normal, endPoint0);
|
|
var t = -(plane.distance + nDotP0) / nDotDiff;
|
|
|
|
// intersection only if t is in [0, 1]
|
|
if (t < 0.0 || t > 1.0) {
|
|
return undefined;
|
|
}
|
|
|
|
// intersection is endPoint0 + t * (endPoint1 - endPoint0)
|
|
Cartesian3.multiplyByScalar(difference, t, result);
|
|
Cartesian3.add(endPoint0, result, result);
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Computes the intersection of a triangle and a plane
|
|
*
|
|
* @param {Cartesian3} p0 First point of the triangle
|
|
* @param {Cartesian3} p1 Second point of the triangle
|
|
* @param {Cartesian3} p2 Third point of the triangle
|
|
* @param {Plane} plane Intersection plane
|
|
* @returns {Object} An object with properties <code>positions</code> and <code>indices</code>, which are arrays that represent three triangles that do not cross the plane. (Undefined if no intersection exists)
|
|
*
|
|
* @example
|
|
* var origin = Cesium.Cartesian3.fromDegrees(-75.59777, 40.03883);
|
|
* var normal = ellipsoid.geodeticSurfaceNormal(origin);
|
|
* var plane = Cesium.Plane.fromPointNormal(origin, normal);
|
|
*
|
|
* var p0 = new Cesium.Cartesian3(...);
|
|
* var p1 = new Cesium.Cartesian3(...);
|
|
* var p2 = new Cesium.Cartesian3(...);
|
|
*
|
|
* // convert the triangle composed of points (p0, p1, p2) to three triangles that don't cross the plane
|
|
* var triangles = Cesium.IntersectionTests.trianglePlaneIntersection(p0, p1, p2, plane);
|
|
*/
|
|
IntersectionTests.trianglePlaneIntersection = function (p0, p1, p2, plane) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!defined(p0) || !defined(p1) || !defined(p2) || !defined(plane)) {
|
|
throw new DeveloperError("p0, p1, p2, and plane are required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
var planeNormal = plane.normal;
|
|
var planeD = plane.distance;
|
|
var p0Behind = Cartesian3.dot(planeNormal, p0) + planeD < 0.0;
|
|
var p1Behind = Cartesian3.dot(planeNormal, p1) + planeD < 0.0;
|
|
var p2Behind = Cartesian3.dot(planeNormal, p2) + planeD < 0.0;
|
|
// Given these dots products, the calls to lineSegmentPlaneIntersection
|
|
// always have defined results.
|
|
|
|
var numBehind = 0;
|
|
numBehind += p0Behind ? 1 : 0;
|
|
numBehind += p1Behind ? 1 : 0;
|
|
numBehind += p2Behind ? 1 : 0;
|
|
|
|
var u1, u2;
|
|
if (numBehind === 1 || numBehind === 2) {
|
|
u1 = new Cartesian3();
|
|
u2 = new Cartesian3();
|
|
}
|
|
|
|
if (numBehind === 1) {
|
|
if (p0Behind) {
|
|
IntersectionTests.lineSegmentPlane(p0, p1, plane, u1);
|
|
IntersectionTests.lineSegmentPlane(p0, p2, plane, u2);
|
|
|
|
return {
|
|
positions: [p0, p1, p2, u1, u2],
|
|
indices: [
|
|
// Behind
|
|
0,
|
|
3,
|
|
4,
|
|
|
|
// In front
|
|
1,
|
|
2,
|
|
4,
|
|
1,
|
|
4,
|
|
3,
|
|
],
|
|
};
|
|
} else if (p1Behind) {
|
|
IntersectionTests.lineSegmentPlane(p1, p2, plane, u1);
|
|
IntersectionTests.lineSegmentPlane(p1, p0, plane, u2);
|
|
|
|
return {
|
|
positions: [p0, p1, p2, u1, u2],
|
|
indices: [
|
|
// Behind
|
|
1,
|
|
3,
|
|
4,
|
|
|
|
// In front
|
|
2,
|
|
0,
|
|
4,
|
|
2,
|
|
4,
|
|
3,
|
|
],
|
|
};
|
|
} else if (p2Behind) {
|
|
IntersectionTests.lineSegmentPlane(p2, p0, plane, u1);
|
|
IntersectionTests.lineSegmentPlane(p2, p1, plane, u2);
|
|
|
|
return {
|
|
positions: [p0, p1, p2, u1, u2],
|
|
indices: [
|
|
// Behind
|
|
2,
|
|
3,
|
|
4,
|
|
|
|
// In front
|
|
0,
|
|
1,
|
|
4,
|
|
0,
|
|
4,
|
|
3,
|
|
],
|
|
};
|
|
}
|
|
} else if (numBehind === 2) {
|
|
if (!p0Behind) {
|
|
IntersectionTests.lineSegmentPlane(p1, p0, plane, u1);
|
|
IntersectionTests.lineSegmentPlane(p2, p0, plane, u2);
|
|
|
|
return {
|
|
positions: [p0, p1, p2, u1, u2],
|
|
indices: [
|
|
// Behind
|
|
1,
|
|
2,
|
|
4,
|
|
1,
|
|
4,
|
|
3,
|
|
|
|
// In front
|
|
0,
|
|
3,
|
|
4,
|
|
],
|
|
};
|
|
} else if (!p1Behind) {
|
|
IntersectionTests.lineSegmentPlane(p2, p1, plane, u1);
|
|
IntersectionTests.lineSegmentPlane(p0, p1, plane, u2);
|
|
|
|
return {
|
|
positions: [p0, p1, p2, u1, u2],
|
|
indices: [
|
|
// Behind
|
|
2,
|
|
0,
|
|
4,
|
|
2,
|
|
4,
|
|
3,
|
|
|
|
// In front
|
|
1,
|
|
3,
|
|
4,
|
|
],
|
|
};
|
|
} else if (!p2Behind) {
|
|
IntersectionTests.lineSegmentPlane(p0, p2, plane, u1);
|
|
IntersectionTests.lineSegmentPlane(p1, p2, plane, u2);
|
|
|
|
return {
|
|
positions: [p0, p1, p2, u1, u2],
|
|
indices: [
|
|
// Behind
|
|
0,
|
|
1,
|
|
4,
|
|
0,
|
|
4,
|
|
3,
|
|
|
|
// In front
|
|
2,
|
|
3,
|
|
4,
|
|
],
|
|
};
|
|
}
|
|
}
|
|
|
|
// if numBehind is 3, the triangle is completely behind the plane;
|
|
// otherwise, it is completely in front (numBehind is 0).
|
|
return undefined;
|
|
};
|
|
export default IntersectionTests;
|