You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

418 lines
13 KiB
JavaScript

import arrayRemoveDuplicates from "./arrayRemoveDuplicates.js";
import BoundingRectangle from "./BoundingRectangle.js";
import BoundingSphere from "./BoundingSphere.js";
import Cartesian2 from "./Cartesian2.js";
import Cartesian3 from "./Cartesian3.js";
import ComponentDatatype from "./ComponentDatatype.js";
import CornerType from "./CornerType.js";
import defaultValue from "./defaultValue.js";
import defined from "./defined.js";
import DeveloperError from "./DeveloperError.js";
import Ellipsoid from "./Ellipsoid.js";
import Geometry from "./Geometry.js";
import GeometryAttribute from "./GeometryAttribute.js";
import GeometryAttributes from "./GeometryAttributes.js";
import GeometryPipeline from "./GeometryPipeline.js";
import IndexDatatype from "./IndexDatatype.js";
import CesiumMath from "./Math.js";
import oneTimeWarning from "./oneTimeWarning.js";
import PolygonPipeline from "./PolygonPipeline.js";
import PolylineVolumeGeometryLibrary from "./PolylineVolumeGeometryLibrary.js";
import PrimitiveType from "./PrimitiveType.js";
import VertexFormat from "./VertexFormat.js";
import WindingOrder from "./WindingOrder.js";
function computeAttributes(
combinedPositions,
shape,
boundingRectangle,
vertexFormat
) {
var attributes = new GeometryAttributes();
if (vertexFormat.position) {
attributes.position = new GeometryAttribute({
componentDatatype: ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: combinedPositions,
});
}
var shapeLength = shape.length;
var vertexCount = combinedPositions.length / 3;
var length = (vertexCount - shapeLength * 2) / (shapeLength * 2);
var firstEndIndices = PolygonPipeline.triangulate(shape);
var indicesCount =
(length - 1) * shapeLength * 6 + firstEndIndices.length * 2;
var indices = IndexDatatype.createTypedArray(vertexCount, indicesCount);
var i, j;
var ll, ul, ur, lr;
var offset = shapeLength * 2;
var index = 0;
for (i = 0; i < length - 1; i++) {
for (j = 0; j < shapeLength - 1; j++) {
ll = j * 2 + i * shapeLength * 2;
lr = ll + offset;
ul = ll + 1;
ur = ul + offset;
indices[index++] = ul;
indices[index++] = ll;
indices[index++] = ur;
indices[index++] = ur;
indices[index++] = ll;
indices[index++] = lr;
}
ll = shapeLength * 2 - 2 + i * shapeLength * 2;
ul = ll + 1;
ur = ul + offset;
lr = ll + offset;
indices[index++] = ul;
indices[index++] = ll;
indices[index++] = ur;
indices[index++] = ur;
indices[index++] = ll;
indices[index++] = lr;
}
if (vertexFormat.st || vertexFormat.tangent || vertexFormat.bitangent) {
// st required for tangent/bitangent calculation
var st = new Float32Array(vertexCount * 2);
var lengthSt = 1 / (length - 1);
var heightSt = 1 / boundingRectangle.height;
var heightOffset = boundingRectangle.height / 2;
var s, t;
var stindex = 0;
for (i = 0; i < length; i++) {
s = i * lengthSt;
t = heightSt * (shape[0].y + heightOffset);
st[stindex++] = s;
st[stindex++] = t;
for (j = 1; j < shapeLength; j++) {
t = heightSt * (shape[j].y + heightOffset);
st[stindex++] = s;
st[stindex++] = t;
st[stindex++] = s;
st[stindex++] = t;
}
t = heightSt * (shape[0].y + heightOffset);
st[stindex++] = s;
st[stindex++] = t;
}
for (j = 0; j < shapeLength; j++) {
s = 0;
t = heightSt * (shape[j].y + heightOffset);
st[stindex++] = s;
st[stindex++] = t;
}
for (j = 0; j < shapeLength; j++) {
s = (length - 1) * lengthSt;
t = heightSt * (shape[j].y + heightOffset);
st[stindex++] = s;
st[stindex++] = t;
}
attributes.st = new GeometryAttribute({
componentDatatype: ComponentDatatype.FLOAT,
componentsPerAttribute: 2,
values: new Float32Array(st),
});
}
var endOffset = vertexCount - shapeLength * 2;
for (i = 0; i < firstEndIndices.length; i += 3) {
var v0 = firstEndIndices[i] + endOffset;
var v1 = firstEndIndices[i + 1] + endOffset;
var v2 = firstEndIndices[i + 2] + endOffset;
indices[index++] = v0;
indices[index++] = v1;
indices[index++] = v2;
indices[index++] = v2 + shapeLength;
indices[index++] = v1 + shapeLength;
indices[index++] = v0 + shapeLength;
}
var geometry = new Geometry({
attributes: attributes,
indices: indices,
boundingSphere: BoundingSphere.fromVertices(combinedPositions),
primitiveType: PrimitiveType.TRIANGLES,
});
if (vertexFormat.normal) {
geometry = GeometryPipeline.computeNormal(geometry);
}
if (vertexFormat.tangent || vertexFormat.bitangent) {
try {
geometry = GeometryPipeline.computeTangentAndBitangent(geometry);
} catch (e) {
oneTimeWarning(
"polyline-volume-tangent-bitangent",
"Unable to compute tangents and bitangents for polyline volume geometry"
);
//TODO https://github.com/CesiumGS/cesium/issues/3609
}
if (!vertexFormat.tangent) {
geometry.attributes.tangent = undefined;
}
if (!vertexFormat.bitangent) {
geometry.attributes.bitangent = undefined;
}
if (!vertexFormat.st) {
geometry.attributes.st = undefined;
}
}
return geometry;
}
/**
* A description of a polyline with a volume (a 2D shape extruded along a polyline).
*
* @alias PolylineVolumeGeometry
* @constructor
*
* @param {Object} options Object with the following properties:
* @param {Cartesian3[]} options.polylinePositions An array of {@link Cartesian3} positions that define the center of the polyline volume.
* @param {Cartesian2[]} options.shapePositions An array of {@link Cartesian2} positions that define the shape to be extruded along the polyline
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference.
* @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
* @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.
* @param {CornerType} [options.cornerType=CornerType.ROUNDED] Determines the style of the corners.
*
* @see PolylineVolumeGeometry#createGeometry
*
* @demo {@link https://sandcastle.cesium.com/index.html?src=Polyline%20Volume.html|Cesium Sandcastle Polyline Volume Demo}
*
* @example
* function computeCircle(radius) {
* var positions = [];
* for (var i = 0; i < 360; i++) {
* var radians = Cesium.Math.toRadians(i);
* positions.push(new Cesium.Cartesian2(radius * Math.cos(radians), radius * Math.sin(radians)));
* }
* return positions;
* }
*
* var volume = new Cesium.PolylineVolumeGeometry({
* vertexFormat : Cesium.VertexFormat.POSITION_ONLY,
* polylinePositions : Cesium.Cartesian3.fromDegreesArray([
* -72.0, 40.0,
* -70.0, 35.0
* ]),
* shapePositions : computeCircle(100000.0)
* });
*/
function PolylineVolumeGeometry(options) {
options = defaultValue(options, defaultValue.EMPTY_OBJECT);
var positions = options.polylinePositions;
var shape = options.shapePositions;
//>>includeStart('debug', pragmas.debug);
if (!defined(positions)) {
throw new DeveloperError("options.polylinePositions is required.");
}
if (!defined(shape)) {
throw new DeveloperError("options.shapePositions is required.");
}
//>>includeEnd('debug');
this._positions = positions;
this._shape = shape;
this._ellipsoid = Ellipsoid.clone(
defaultValue(options.ellipsoid, Ellipsoid.WGS84)
);
this._cornerType = defaultValue(options.cornerType, CornerType.ROUNDED);
this._vertexFormat = VertexFormat.clone(
defaultValue(options.vertexFormat, VertexFormat.DEFAULT)
);
this._granularity = defaultValue(
options.granularity,
CesiumMath.RADIANS_PER_DEGREE
);
this._workerName = "createPolylineVolumeGeometry";
var numComponents = 1 + positions.length * Cartesian3.packedLength;
numComponents += 1 + shape.length * Cartesian2.packedLength;
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
this.packedLength =
numComponents + Ellipsoid.packedLength + VertexFormat.packedLength + 2;
}
/**
* Stores the provided instance into the provided array.
*
* @param {PolylineVolumeGeometry} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
PolylineVolumeGeometry.pack = function (value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
if (!defined(value)) {
throw new DeveloperError("value is required");
}
if (!defined(array)) {
throw new DeveloperError("array is required");
}
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
var i;
var positions = value._positions;
var length = positions.length;
array[startingIndex++] = length;
for (i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) {
Cartesian3.pack(positions[i], array, startingIndex);
}
var shape = value._shape;
length = shape.length;
array[startingIndex++] = length;
for (i = 0; i < length; ++i, startingIndex += Cartesian2.packedLength) {
Cartesian2.pack(shape[i], array, startingIndex);
}
Ellipsoid.pack(value._ellipsoid, array, startingIndex);
startingIndex += Ellipsoid.packedLength;
VertexFormat.pack(value._vertexFormat, array, startingIndex);
startingIndex += VertexFormat.packedLength;
array[startingIndex++] = value._cornerType;
array[startingIndex] = value._granularity;
return array;
};
var scratchEllipsoid = Ellipsoid.clone(Ellipsoid.UNIT_SPHERE);
var scratchVertexFormat = new VertexFormat();
var scratchOptions = {
polylinePositions: undefined,
shapePositions: undefined,
ellipsoid: scratchEllipsoid,
vertexFormat: scratchVertexFormat,
cornerType: undefined,
granularity: undefined,
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {PolylineVolumeGeometry} [result] The object into which to store the result.
* @returns {PolylineVolumeGeometry} The modified result parameter or a new PolylineVolumeGeometry instance if one was not provided.
*/
PolylineVolumeGeometry.unpack = function (array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(array)) {
throw new DeveloperError("array is required");
}
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
var i;
var length = array[startingIndex++];
var positions = new Array(length);
for (i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) {
positions[i] = Cartesian3.unpack(array, startingIndex);
}
length = array[startingIndex++];
var shape = new Array(length);
for (i = 0; i < length; ++i, startingIndex += Cartesian2.packedLength) {
shape[i] = Cartesian2.unpack(array, startingIndex);
}
var ellipsoid = Ellipsoid.unpack(array, startingIndex, scratchEllipsoid);
startingIndex += Ellipsoid.packedLength;
var vertexFormat = VertexFormat.unpack(
array,
startingIndex,
scratchVertexFormat
);
startingIndex += VertexFormat.packedLength;
var cornerType = array[startingIndex++];
var granularity = array[startingIndex];
if (!defined(result)) {
scratchOptions.polylinePositions = positions;
scratchOptions.shapePositions = shape;
scratchOptions.cornerType = cornerType;
scratchOptions.granularity = granularity;
return new PolylineVolumeGeometry(scratchOptions);
}
result._positions = positions;
result._shape = shape;
result._ellipsoid = Ellipsoid.clone(ellipsoid, result._ellipsoid);
result._vertexFormat = VertexFormat.clone(vertexFormat, result._vertexFormat);
result._cornerType = cornerType;
result._granularity = granularity;
return result;
};
var brScratch = new BoundingRectangle();
/**
* Computes the geometric representation of a polyline with a volume, including its vertices, indices, and a bounding sphere.
*
* @param {PolylineVolumeGeometry} polylineVolumeGeometry A description of the polyline volume.
* @returns {Geometry|undefined} The computed vertices and indices.
*/
PolylineVolumeGeometry.createGeometry = function (polylineVolumeGeometry) {
var positions = polylineVolumeGeometry._positions;
var cleanPositions = arrayRemoveDuplicates(
positions,
Cartesian3.equalsEpsilon
);
var shape2D = polylineVolumeGeometry._shape;
shape2D = PolylineVolumeGeometryLibrary.removeDuplicatesFromShape(shape2D);
if (cleanPositions.length < 2 || shape2D.length < 3) {
return undefined;
}
if (
PolygonPipeline.computeWindingOrder2D(shape2D) === WindingOrder.CLOCKWISE
) {
shape2D.reverse();
}
var boundingRectangle = BoundingRectangle.fromPoints(shape2D, brScratch);
var computedPositions = PolylineVolumeGeometryLibrary.computePositions(
cleanPositions,
shape2D,
boundingRectangle,
polylineVolumeGeometry,
true
);
return computeAttributes(
computedPositions,
shape2D,
boundingRectangle,
polylineVolumeGeometry._vertexFormat
);
};
export default PolylineVolumeGeometry;