You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
69 lines
1.9 KiB
JavaScript
69 lines
1.9 KiB
JavaScript
import { LagrangePolynomialApproximation } from "../../Source/Cesium.js";
|
|
|
|
describe("Core/LagrangePolynomialApproximation", function () {
|
|
//The results of these specs were validated against STK Components
|
|
//an aerospace SDK available from Analytical Graphics. www.agi.com/components/
|
|
|
|
var xTable = [0, 60, 120, 180, 240, 300, 360, 420];
|
|
var yTable = [
|
|
13378137.0,
|
|
0.0,
|
|
0,
|
|
13374128.3576279,
|
|
327475.593690065,
|
|
0,
|
|
13362104.8328212,
|
|
654754.936954423,
|
|
0,
|
|
13342073.6310691,
|
|
981641.896976832,
|
|
0,
|
|
13314046.7567223,
|
|
1307940.57608951,
|
|
0,
|
|
13278041.005799,
|
|
1633455.42917117,
|
|
0,
|
|
13234077.9559193,
|
|
1957991.38083385,
|
|
0,
|
|
13182183.953374,
|
|
2281353.94232816,
|
|
0,
|
|
];
|
|
|
|
var x = 100.0;
|
|
|
|
it("interpolation produces correct results.", function () {
|
|
var result = LagrangePolynomialApproximation.interpolateOrderZero(
|
|
x,
|
|
xTable,
|
|
yTable,
|
|
3
|
|
);
|
|
var expectedResult = [13367002.870928623, 545695.7388100647, 0];
|
|
expect(result).toEqualEpsilon(expectedResult, 1e-15);
|
|
});
|
|
|
|
it("interpolation produces correct results with a result parameter", function () {
|
|
var result = new Array(3);
|
|
var returnedResult = LagrangePolynomialApproximation.interpolateOrderZero(
|
|
x,
|
|
xTable,
|
|
yTable,
|
|
3,
|
|
result
|
|
);
|
|
var expectedResult = [13367002.870928623, 545695.7388100647, 0];
|
|
expect(result).toBe(returnedResult);
|
|
expect(result).toEqualEpsilon(expectedResult, 1e-15);
|
|
});
|
|
|
|
it("getRequiredDataPoints should be 1 more than degree, except for 0, which requires 2", function () {
|
|
expect(LagrangePolynomialApproximation.getRequiredDataPoints(0)).toEqual(2);
|
|
expect(LagrangePolynomialApproximation.getRequiredDataPoints(1)).toEqual(2);
|
|
expect(LagrangePolynomialApproximation.getRequiredDataPoints(2)).toEqual(3);
|
|
expect(LagrangePolynomialApproximation.getRequiredDataPoints(3)).toEqual(4);
|
|
});
|
|
});
|