You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
790 lines
25 KiB
JavaScript
790 lines
25 KiB
JavaScript
import Check from "./Check.js";
|
|
import defaultValue from "./defaultValue.js";
|
|
import defined from "./defined.js";
|
|
import DeveloperError from "./DeveloperError.js";
|
|
import CesiumMath from "./Math.js";
|
|
|
|
/**
|
|
* A 2D Cartesian point.
|
|
* @alias Cartesian2
|
|
* @constructor
|
|
*
|
|
* @param {Number} [x=0.0] The X component.
|
|
* @param {Number} [y=0.0] The Y component.
|
|
*
|
|
* @see Cartesian3
|
|
* @see Cartesian4
|
|
* @see Packable
|
|
*/
|
|
function Cartesian2(x, y) {
|
|
/**
|
|
* The X component.
|
|
* @type {Number}
|
|
* @default 0.0
|
|
*/
|
|
this.x = defaultValue(x, 0.0);
|
|
|
|
/**
|
|
* The Y component.
|
|
* @type {Number}
|
|
* @default 0.0
|
|
*/
|
|
this.y = defaultValue(y, 0.0);
|
|
}
|
|
|
|
/**
|
|
* Creates a Cartesian2 instance from x and y coordinates.
|
|
*
|
|
* @param {Number} x The x coordinate.
|
|
* @param {Number} y The y coordinate.
|
|
* @param {Cartesian2} [result] The object onto which to store the result.
|
|
* @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
|
|
*/
|
|
Cartesian2.fromElements = function (x, y, result) {
|
|
if (!defined(result)) {
|
|
return new Cartesian2(x, y);
|
|
}
|
|
|
|
result.x = x;
|
|
result.y = y;
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Duplicates a Cartesian2 instance.
|
|
*
|
|
* @param {Cartesian2} cartesian The Cartesian to duplicate.
|
|
* @param {Cartesian2} [result] The object onto which to store the result.
|
|
* @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. (Returns undefined if cartesian is undefined)
|
|
*/
|
|
Cartesian2.clone = function (cartesian, result) {
|
|
if (!defined(cartesian)) {
|
|
return undefined;
|
|
}
|
|
if (!defined(result)) {
|
|
return new Cartesian2(cartesian.x, cartesian.y);
|
|
}
|
|
|
|
result.x = cartesian.x;
|
|
result.y = cartesian.y;
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Creates a Cartesian2 instance from an existing Cartesian3. This simply takes the
|
|
* x and y properties of the Cartesian3 and drops z.
|
|
* @function
|
|
*
|
|
* @param {Cartesian3} cartesian The Cartesian3 instance to create a Cartesian2 instance from.
|
|
* @param {Cartesian2} [result] The object onto which to store the result.
|
|
* @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
|
|
*/
|
|
Cartesian2.fromCartesian3 = Cartesian2.clone;
|
|
|
|
/**
|
|
* Creates a Cartesian2 instance from an existing Cartesian4. This simply takes the
|
|
* x and y properties of the Cartesian4 and drops z and w.
|
|
* @function
|
|
*
|
|
* @param {Cartesian4} cartesian The Cartesian4 instance to create a Cartesian2 instance from.
|
|
* @param {Cartesian2} [result] The object onto which to store the result.
|
|
* @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
|
|
*/
|
|
Cartesian2.fromCartesian4 = Cartesian2.clone;
|
|
|
|
/**
|
|
* The number of elements used to pack the object into an array.
|
|
* @type {Number}
|
|
*/
|
|
Cartesian2.packedLength = 2;
|
|
|
|
/**
|
|
* Stores the provided instance into the provided array.
|
|
*
|
|
* @param {Cartesian2} value The value to pack.
|
|
* @param {Number[]} array The array to pack into.
|
|
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
|
|
*
|
|
* @returns {Number[]} The array that was packed into
|
|
*/
|
|
Cartesian2.pack = function (value, array, startingIndex) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.typeOf.object("value", value);
|
|
Check.defined("array", array);
|
|
//>>includeEnd('debug');
|
|
|
|
startingIndex = defaultValue(startingIndex, 0);
|
|
|
|
array[startingIndex++] = value.x;
|
|
array[startingIndex] = value.y;
|
|
|
|
return array;
|
|
};
|
|
|
|
/**
|
|
* Retrieves an instance from a packed array.
|
|
*
|
|
* @param {Number[]} array The packed array.
|
|
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
|
|
* @param {Cartesian2} [result] The object into which to store the result.
|
|
* @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
|
|
*/
|
|
Cartesian2.unpack = function (array, startingIndex, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.defined("array", array);
|
|
//>>includeEnd('debug');
|
|
|
|
startingIndex = defaultValue(startingIndex, 0);
|
|
|
|
if (!defined(result)) {
|
|
result = new Cartesian2();
|
|
}
|
|
result.x = array[startingIndex++];
|
|
result.y = array[startingIndex];
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Flattens an array of Cartesian2s into and array of components.
|
|
*
|
|
* @param {Cartesian2[]} array The array of cartesians to pack.
|
|
* @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 2 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 2) elements.
|
|
|
|
* @returns {Number[]} The packed array.
|
|
*/
|
|
Cartesian2.packArray = function (array, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.defined("array", array);
|
|
//>>includeEnd('debug');
|
|
|
|
var length = array.length;
|
|
var resultLength = length * 2;
|
|
if (!defined(result)) {
|
|
result = new Array(resultLength);
|
|
} else if (!Array.isArray(result) && result.length !== resultLength) {
|
|
throw new DeveloperError(
|
|
"If result is a typed array, it must have exactly array.length * 2 elements"
|
|
);
|
|
} else if (result.length !== resultLength) {
|
|
result.length = resultLength;
|
|
}
|
|
|
|
for (var i = 0; i < length; ++i) {
|
|
Cartesian2.pack(array[i], result, i * 2);
|
|
}
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Unpacks an array of cartesian components into and array of Cartesian2s.
|
|
*
|
|
* @param {Number[]} array The array of components to unpack.
|
|
* @param {Cartesian2[]} [result] The array onto which to store the result.
|
|
* @returns {Cartesian2[]} The unpacked array.
|
|
*/
|
|
Cartesian2.unpackArray = function (array, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.defined("array", array);
|
|
Check.typeOf.number.greaterThanOrEquals("array.length", array.length, 2);
|
|
if (array.length % 2 !== 0) {
|
|
throw new DeveloperError("array length must be a multiple of 2.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
var length = array.length;
|
|
if (!defined(result)) {
|
|
result = new Array(length / 2);
|
|
} else {
|
|
result.length = length / 2;
|
|
}
|
|
|
|
for (var i = 0; i < length; i += 2) {
|
|
var index = i / 2;
|
|
result[index] = Cartesian2.unpack(array, i, result[index]);
|
|
}
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Creates a Cartesian2 from two consecutive elements in an array.
|
|
* @function
|
|
*
|
|
* @param {Number[]} array The array whose two consecutive elements correspond to the x and y components, respectively.
|
|
* @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to the x component.
|
|
* @param {Cartesian2} [result] The object onto which to store the result.
|
|
* @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
|
|
*
|
|
* @example
|
|
* // Create a Cartesian2 with (1.0, 2.0)
|
|
* var v = [1.0, 2.0];
|
|
* var p = Cesium.Cartesian2.fromArray(v);
|
|
*
|
|
* // Create a Cartesian2 with (1.0, 2.0) using an offset into an array
|
|
* var v2 = [0.0, 0.0, 1.0, 2.0];
|
|
* var p2 = Cesium.Cartesian2.fromArray(v2, 2);
|
|
*/
|
|
Cartesian2.fromArray = Cartesian2.unpack;
|
|
|
|
/**
|
|
* Computes the value of the maximum component for the supplied Cartesian.
|
|
*
|
|
* @param {Cartesian2} cartesian The cartesian to use.
|
|
* @returns {Number} The value of the maximum component.
|
|
*/
|
|
Cartesian2.maximumComponent = function (cartesian) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.typeOf.object("cartesian", cartesian);
|
|
//>>includeEnd('debug');
|
|
|
|
return Math.max(cartesian.x, cartesian.y);
|
|
};
|
|
|
|
/**
|
|
* Computes the value of the minimum component for the supplied Cartesian.
|
|
*
|
|
* @param {Cartesian2} cartesian The cartesian to use.
|
|
* @returns {Number} The value of the minimum component.
|
|
*/
|
|
Cartesian2.minimumComponent = function (cartesian) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.typeOf.object("cartesian", cartesian);
|
|
//>>includeEnd('debug');
|
|
|
|
return Math.min(cartesian.x, cartesian.y);
|
|
};
|
|
|
|
/**
|
|
* Compares two Cartesians and computes a Cartesian which contains the minimum components of the supplied Cartesians.
|
|
*
|
|
* @param {Cartesian2} first A cartesian to compare.
|
|
* @param {Cartesian2} second A cartesian to compare.
|
|
* @param {Cartesian2} result The object into which to store the result.
|
|
* @returns {Cartesian2} A cartesian with the minimum components.
|
|
*/
|
|
Cartesian2.minimumByComponent = function (first, second, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.typeOf.object("first", first);
|
|
Check.typeOf.object("second", second);
|
|
Check.typeOf.object("result", result);
|
|
//>>includeEnd('debug');
|
|
|
|
result.x = Math.min(first.x, second.x);
|
|
result.y = Math.min(first.y, second.y);
|
|
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Compares two Cartesians and computes a Cartesian which contains the maximum components of the supplied Cartesians.
|
|
*
|
|
* @param {Cartesian2} first A cartesian to compare.
|
|
* @param {Cartesian2} second A cartesian to compare.
|
|
* @param {Cartesian2} result The object into which to store the result.
|
|
* @returns {Cartesian2} A cartesian with the maximum components.
|
|
*/
|
|
Cartesian2.maximumByComponent = function (first, second, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.typeOf.object("first", first);
|
|
Check.typeOf.object("second", second);
|
|
Check.typeOf.object("result", result);
|
|
//>>includeEnd('debug');
|
|
|
|
result.x = Math.max(first.x, second.x);
|
|
result.y = Math.max(first.y, second.y);
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Computes the provided Cartesian's squared magnitude.
|
|
*
|
|
* @param {Cartesian2} cartesian The Cartesian instance whose squared magnitude is to be computed.
|
|
* @returns {Number} The squared magnitude.
|
|
*/
|
|
Cartesian2.magnitudeSquared = function (cartesian) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.typeOf.object("cartesian", cartesian);
|
|
//>>includeEnd('debug');
|
|
|
|
return cartesian.x * cartesian.x + cartesian.y * cartesian.y;
|
|
};
|
|
|
|
/**
|
|
* Computes the Cartesian's magnitude (length).
|
|
*
|
|
* @param {Cartesian2} cartesian The Cartesian instance whose magnitude is to be computed.
|
|
* @returns {Number} The magnitude.
|
|
*/
|
|
Cartesian2.magnitude = function (cartesian) {
|
|
return Math.sqrt(Cartesian2.magnitudeSquared(cartesian));
|
|
};
|
|
|
|
var distanceScratch = new Cartesian2();
|
|
|
|
/**
|
|
* Computes the distance between two points.
|
|
*
|
|
* @param {Cartesian2} left The first point to compute the distance from.
|
|
* @param {Cartesian2} right The second point to compute the distance to.
|
|
* @returns {Number} The distance between two points.
|
|
*
|
|
* @example
|
|
* // Returns 1.0
|
|
* var d = Cesium.Cartesian2.distance(new Cesium.Cartesian2(1.0, 0.0), new Cesium.Cartesian2(2.0, 0.0));
|
|
*/
|
|
Cartesian2.distance = function (left, right) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.typeOf.object("left", left);
|
|
Check.typeOf.object("right", right);
|
|
//>>includeEnd('debug');
|
|
|
|
Cartesian2.subtract(left, right, distanceScratch);
|
|
return Cartesian2.magnitude(distanceScratch);
|
|
};
|
|
|
|
/**
|
|
* Computes the squared distance between two points. Comparing squared distances
|
|
* using this function is more efficient than comparing distances using {@link Cartesian2#distance}.
|
|
*
|
|
* @param {Cartesian2} left The first point to compute the distance from.
|
|
* @param {Cartesian2} right The second point to compute the distance to.
|
|
* @returns {Number} The distance between two points.
|
|
*
|
|
* @example
|
|
* // Returns 4.0, not 2.0
|
|
* var d = Cesium.Cartesian2.distance(new Cesium.Cartesian2(1.0, 0.0), new Cesium.Cartesian2(3.0, 0.0));
|
|
*/
|
|
Cartesian2.distanceSquared = function (left, right) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.typeOf.object("left", left);
|
|
Check.typeOf.object("right", right);
|
|
//>>includeEnd('debug');
|
|
|
|
Cartesian2.subtract(left, right, distanceScratch);
|
|
return Cartesian2.magnitudeSquared(distanceScratch);
|
|
};
|
|
|
|
/**
|
|
* Computes the normalized form of the supplied Cartesian.
|
|
*
|
|
* @param {Cartesian2} cartesian The Cartesian to be normalized.
|
|
* @param {Cartesian2} result The object onto which to store the result.
|
|
* @returns {Cartesian2} The modified result parameter.
|
|
*/
|
|
Cartesian2.normalize = function (cartesian, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.typeOf.object("cartesian", cartesian);
|
|
Check.typeOf.object("result", result);
|
|
//>>includeEnd('debug');
|
|
|
|
var magnitude = Cartesian2.magnitude(cartesian);
|
|
|
|
result.x = cartesian.x / magnitude;
|
|
result.y = cartesian.y / magnitude;
|
|
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (isNaN(result.x) || isNaN(result.y)) {
|
|
throw new DeveloperError("normalized result is not a number");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Computes the dot (scalar) product of two Cartesians.
|
|
*
|
|
* @param {Cartesian2} left The first Cartesian.
|
|
* @param {Cartesian2} right The second Cartesian.
|
|
* @returns {Number} The dot product.
|
|
*/
|
|
Cartesian2.dot = function (left, right) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.typeOf.object("left", left);
|
|
Check.typeOf.object("right", right);
|
|
//>>includeEnd('debug');
|
|
|
|
return left.x * right.x + left.y * right.y;
|
|
};
|
|
|
|
/**
|
|
* Computes the magnitude of the cross product that would result from implicitly setting the Z coordinate of the input vectors to 0
|
|
*
|
|
* @param {Cartesian2} left The first Cartesian.
|
|
* @param {Cartesian2} right The second Cartesian.
|
|
* @returns {Number} The cross product.
|
|
*/
|
|
Cartesian2.cross = function (left, right) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.typeOf.object("left", left);
|
|
Check.typeOf.object("right", right);
|
|
//>>includeEnd('debug');
|
|
|
|
return left.x * right.y - left.y * right.x;
|
|
};
|
|
|
|
/**
|
|
* Computes the componentwise product of two Cartesians.
|
|
*
|
|
* @param {Cartesian2} left The first Cartesian.
|
|
* @param {Cartesian2} right The second Cartesian.
|
|
* @param {Cartesian2} result The object onto which to store the result.
|
|
* @returns {Cartesian2} The modified result parameter.
|
|
*/
|
|
Cartesian2.multiplyComponents = function (left, right, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.typeOf.object("left", left);
|
|
Check.typeOf.object("right", right);
|
|
Check.typeOf.object("result", result);
|
|
//>>includeEnd('debug');
|
|
|
|
result.x = left.x * right.x;
|
|
result.y = left.y * right.y;
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Computes the componentwise quotient of two Cartesians.
|
|
*
|
|
* @param {Cartesian2} left The first Cartesian.
|
|
* @param {Cartesian2} right The second Cartesian.
|
|
* @param {Cartesian2} result The object onto which to store the result.
|
|
* @returns {Cartesian2} The modified result parameter.
|
|
*/
|
|
Cartesian2.divideComponents = function (left, right, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.typeOf.object("left", left);
|
|
Check.typeOf.object("right", right);
|
|
Check.typeOf.object("result", result);
|
|
//>>includeEnd('debug');
|
|
|
|
result.x = left.x / right.x;
|
|
result.y = left.y / right.y;
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Computes the componentwise sum of two Cartesians.
|
|
*
|
|
* @param {Cartesian2} left The first Cartesian.
|
|
* @param {Cartesian2} right The second Cartesian.
|
|
* @param {Cartesian2} result The object onto which to store the result.
|
|
* @returns {Cartesian2} The modified result parameter.
|
|
*/
|
|
Cartesian2.add = function (left, right, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.typeOf.object("left", left);
|
|
Check.typeOf.object("right", right);
|
|
Check.typeOf.object("result", result);
|
|
//>>includeEnd('debug');
|
|
|
|
result.x = left.x + right.x;
|
|
result.y = left.y + right.y;
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Computes the componentwise difference of two Cartesians.
|
|
*
|
|
* @param {Cartesian2} left The first Cartesian.
|
|
* @param {Cartesian2} right The second Cartesian.
|
|
* @param {Cartesian2} result The object onto which to store the result.
|
|
* @returns {Cartesian2} The modified result parameter.
|
|
*/
|
|
Cartesian2.subtract = function (left, right, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.typeOf.object("left", left);
|
|
Check.typeOf.object("right", right);
|
|
Check.typeOf.object("result", result);
|
|
//>>includeEnd('debug');
|
|
|
|
result.x = left.x - right.x;
|
|
result.y = left.y - right.y;
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Multiplies the provided Cartesian componentwise by the provided scalar.
|
|
*
|
|
* @param {Cartesian2} cartesian The Cartesian to be scaled.
|
|
* @param {Number} scalar The scalar to multiply with.
|
|
* @param {Cartesian2} result The object onto which to store the result.
|
|
* @returns {Cartesian2} The modified result parameter.
|
|
*/
|
|
Cartesian2.multiplyByScalar = function (cartesian, scalar, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.typeOf.object("cartesian", cartesian);
|
|
Check.typeOf.number("scalar", scalar);
|
|
Check.typeOf.object("result", result);
|
|
//>>includeEnd('debug');
|
|
|
|
result.x = cartesian.x * scalar;
|
|
result.y = cartesian.y * scalar;
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Divides the provided Cartesian componentwise by the provided scalar.
|
|
*
|
|
* @param {Cartesian2} cartesian The Cartesian to be divided.
|
|
* @param {Number} scalar The scalar to divide by.
|
|
* @param {Cartesian2} result The object onto which to store the result.
|
|
* @returns {Cartesian2} The modified result parameter.
|
|
*/
|
|
Cartesian2.divideByScalar = function (cartesian, scalar, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.typeOf.object("cartesian", cartesian);
|
|
Check.typeOf.number("scalar", scalar);
|
|
Check.typeOf.object("result", result);
|
|
//>>includeEnd('debug');
|
|
|
|
result.x = cartesian.x / scalar;
|
|
result.y = cartesian.y / scalar;
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Negates the provided Cartesian.
|
|
*
|
|
* @param {Cartesian2} cartesian The Cartesian to be negated.
|
|
* @param {Cartesian2} result The object onto which to store the result.
|
|
* @returns {Cartesian2} The modified result parameter.
|
|
*/
|
|
Cartesian2.negate = function (cartesian, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.typeOf.object("cartesian", cartesian);
|
|
Check.typeOf.object("result", result);
|
|
//>>includeEnd('debug');
|
|
|
|
result.x = -cartesian.x;
|
|
result.y = -cartesian.y;
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Computes the absolute value of the provided Cartesian.
|
|
*
|
|
* @param {Cartesian2} cartesian The Cartesian whose absolute value is to be computed.
|
|
* @param {Cartesian2} result The object onto which to store the result.
|
|
* @returns {Cartesian2} The modified result parameter.
|
|
*/
|
|
Cartesian2.abs = function (cartesian, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.typeOf.object("cartesian", cartesian);
|
|
Check.typeOf.object("result", result);
|
|
//>>includeEnd('debug');
|
|
|
|
result.x = Math.abs(cartesian.x);
|
|
result.y = Math.abs(cartesian.y);
|
|
return result;
|
|
};
|
|
|
|
var lerpScratch = new Cartesian2();
|
|
/**
|
|
* Computes the linear interpolation or extrapolation at t using the provided cartesians.
|
|
*
|
|
* @param {Cartesian2} start The value corresponding to t at 0.0.
|
|
* @param {Cartesian2} end The value corresponding to t at 1.0.
|
|
* @param {Number} t The point along t at which to interpolate.
|
|
* @param {Cartesian2} result The object onto which to store the result.
|
|
* @returns {Cartesian2} The modified result parameter.
|
|
*/
|
|
Cartesian2.lerp = function (start, end, t, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.typeOf.object("start", start);
|
|
Check.typeOf.object("end", end);
|
|
Check.typeOf.number("t", t);
|
|
Check.typeOf.object("result", result);
|
|
//>>includeEnd('debug');
|
|
|
|
Cartesian2.multiplyByScalar(end, t, lerpScratch);
|
|
result = Cartesian2.multiplyByScalar(start, 1.0 - t, result);
|
|
return Cartesian2.add(lerpScratch, result, result);
|
|
};
|
|
|
|
var angleBetweenScratch = new Cartesian2();
|
|
var angleBetweenScratch2 = new Cartesian2();
|
|
/**
|
|
* Returns the angle, in radians, between the provided Cartesians.
|
|
*
|
|
* @param {Cartesian2} left The first Cartesian.
|
|
* @param {Cartesian2} right The second Cartesian.
|
|
* @returns {Number} The angle between the Cartesians.
|
|
*/
|
|
Cartesian2.angleBetween = function (left, right) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.typeOf.object("left", left);
|
|
Check.typeOf.object("right", right);
|
|
//>>includeEnd('debug');
|
|
|
|
Cartesian2.normalize(left, angleBetweenScratch);
|
|
Cartesian2.normalize(right, angleBetweenScratch2);
|
|
return CesiumMath.acosClamped(
|
|
Cartesian2.dot(angleBetweenScratch, angleBetweenScratch2)
|
|
);
|
|
};
|
|
|
|
var mostOrthogonalAxisScratch = new Cartesian2();
|
|
/**
|
|
* Returns the axis that is most orthogonal to the provided Cartesian.
|
|
*
|
|
* @param {Cartesian2} cartesian The Cartesian on which to find the most orthogonal axis.
|
|
* @param {Cartesian2} result The object onto which to store the result.
|
|
* @returns {Cartesian2} The most orthogonal axis.
|
|
*/
|
|
Cartesian2.mostOrthogonalAxis = function (cartesian, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.typeOf.object("cartesian", cartesian);
|
|
Check.typeOf.object("result", result);
|
|
//>>includeEnd('debug');
|
|
|
|
var f = Cartesian2.normalize(cartesian, mostOrthogonalAxisScratch);
|
|
Cartesian2.abs(f, f);
|
|
|
|
if (f.x <= f.y) {
|
|
result = Cartesian2.clone(Cartesian2.UNIT_X, result);
|
|
} else {
|
|
result = Cartesian2.clone(Cartesian2.UNIT_Y, result);
|
|
}
|
|
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Compares the provided Cartesians componentwise and returns
|
|
* <code>true</code> if they are equal, <code>false</code> otherwise.
|
|
*
|
|
* @param {Cartesian2} [left] The first Cartesian.
|
|
* @param {Cartesian2} [right] The second Cartesian.
|
|
* @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise.
|
|
*/
|
|
Cartesian2.equals = function (left, right) {
|
|
return (
|
|
left === right ||
|
|
(defined(left) &&
|
|
defined(right) &&
|
|
left.x === right.x &&
|
|
left.y === right.y)
|
|
);
|
|
};
|
|
|
|
/**
|
|
* @private
|
|
*/
|
|
Cartesian2.equalsArray = function (cartesian, array, offset) {
|
|
return cartesian.x === array[offset] && cartesian.y === array[offset + 1];
|
|
};
|
|
|
|
/**
|
|
* Compares the provided Cartesians componentwise and returns
|
|
* <code>true</code> if they pass an absolute or relative tolerance test,
|
|
* <code>false</code> otherwise.
|
|
*
|
|
* @param {Cartesian2} [left] The first Cartesian.
|
|
* @param {Cartesian2} [right] The second Cartesian.
|
|
* @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing.
|
|
* @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing.
|
|
* @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise.
|
|
*/
|
|
Cartesian2.equalsEpsilon = function (
|
|
left,
|
|
right,
|
|
relativeEpsilon,
|
|
absoluteEpsilon
|
|
) {
|
|
return (
|
|
left === right ||
|
|
(defined(left) &&
|
|
defined(right) &&
|
|
CesiumMath.equalsEpsilon(
|
|
left.x,
|
|
right.x,
|
|
relativeEpsilon,
|
|
absoluteEpsilon
|
|
) &&
|
|
CesiumMath.equalsEpsilon(
|
|
left.y,
|
|
right.y,
|
|
relativeEpsilon,
|
|
absoluteEpsilon
|
|
))
|
|
);
|
|
};
|
|
|
|
/**
|
|
* An immutable Cartesian2 instance initialized to (0.0, 0.0).
|
|
*
|
|
* @type {Cartesian2}
|
|
* @constant
|
|
*/
|
|
Cartesian2.ZERO = Object.freeze(new Cartesian2(0.0, 0.0));
|
|
|
|
/**
|
|
* An immutable Cartesian2 instance initialized to (1.0, 0.0).
|
|
*
|
|
* @type {Cartesian2}
|
|
* @constant
|
|
*/
|
|
Cartesian2.UNIT_X = Object.freeze(new Cartesian2(1.0, 0.0));
|
|
|
|
/**
|
|
* An immutable Cartesian2 instance initialized to (0.0, 1.0).
|
|
*
|
|
* @type {Cartesian2}
|
|
* @constant
|
|
*/
|
|
Cartesian2.UNIT_Y = Object.freeze(new Cartesian2(0.0, 1.0));
|
|
|
|
/**
|
|
* Duplicates this Cartesian2 instance.
|
|
*
|
|
* @param {Cartesian2} [result] The object onto which to store the result.
|
|
* @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided.
|
|
*/
|
|
Cartesian2.prototype.clone = function (result) {
|
|
return Cartesian2.clone(this, result);
|
|
};
|
|
|
|
/**
|
|
* Compares this Cartesian against the provided Cartesian componentwise and returns
|
|
* <code>true</code> if they are equal, <code>false</code> otherwise.
|
|
*
|
|
* @param {Cartesian2} [right] The right hand side Cartesian.
|
|
* @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise.
|
|
*/
|
|
Cartesian2.prototype.equals = function (right) {
|
|
return Cartesian2.equals(this, right);
|
|
};
|
|
|
|
/**
|
|
* Compares this Cartesian against the provided Cartesian componentwise and returns
|
|
* <code>true</code> if they pass an absolute or relative tolerance test,
|
|
* <code>false</code> otherwise.
|
|
*
|
|
* @param {Cartesian2} [right] The right hand side Cartesian.
|
|
* @param {Number} [relativeEpsilon=0] The relative epsilon tolerance to use for equality testing.
|
|
* @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing.
|
|
* @returns {Boolean} <code>true</code> if they are within the provided epsilon, <code>false</code> otherwise.
|
|
*/
|
|
Cartesian2.prototype.equalsEpsilon = function (
|
|
right,
|
|
relativeEpsilon,
|
|
absoluteEpsilon
|
|
) {
|
|
return Cartesian2.equalsEpsilon(
|
|
this,
|
|
right,
|
|
relativeEpsilon,
|
|
absoluteEpsilon
|
|
);
|
|
};
|
|
|
|
/**
|
|
* Creates a string representing this Cartesian in the format '(x, y)'.
|
|
*
|
|
* @returns {String} A string representing the provided Cartesian in the format '(x, y)'.
|
|
*/
|
|
Cartesian2.prototype.toString = function () {
|
|
return "(" + this.x + ", " + this.y + ")";
|
|
};
|
|
export default Cartesian2;
|