You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1408 lines
43 KiB
JavaScript
1408 lines
43 KiB
JavaScript
import arrayFill from "./arrayFill.js";
|
|
import arrayRemoveDuplicates from "./arrayRemoveDuplicates.js";
|
|
import BoundingSphere from "./BoundingSphere.js";
|
|
import Cartesian3 from "./Cartesian3.js";
|
|
import Cartographic from "./Cartographic.js";
|
|
import Check from "./Check.js";
|
|
import ComponentDatatype from "./ComponentDatatype.js";
|
|
import CornerType from "./CornerType.js";
|
|
import CorridorGeometryLibrary from "./CorridorGeometryLibrary.js";
|
|
import defaultValue from "./defaultValue.js";
|
|
import defined from "./defined.js";
|
|
import Ellipsoid from "./Ellipsoid.js";
|
|
import Geometry from "./Geometry.js";
|
|
import GeometryAttribute from "./GeometryAttribute.js";
|
|
import GeometryAttributes from "./GeometryAttributes.js";
|
|
import GeometryOffsetAttribute from "./GeometryOffsetAttribute.js";
|
|
import IndexDatatype from "./IndexDatatype.js";
|
|
import CesiumMath from "./Math.js";
|
|
import PolygonPipeline from "./PolygonPipeline.js";
|
|
import PrimitiveType from "./PrimitiveType.js";
|
|
import Rectangle from "./Rectangle.js";
|
|
import VertexFormat from "./VertexFormat.js";
|
|
|
|
var cartesian1 = new Cartesian3();
|
|
var cartesian2 = new Cartesian3();
|
|
var cartesian3 = new Cartesian3();
|
|
var cartesian4 = new Cartesian3();
|
|
var cartesian5 = new Cartesian3();
|
|
var cartesian6 = new Cartesian3();
|
|
|
|
var scratch1 = new Cartesian3();
|
|
var scratch2 = new Cartesian3();
|
|
|
|
function scaleToSurface(positions, ellipsoid) {
|
|
for (var i = 0; i < positions.length; i++) {
|
|
positions[i] = ellipsoid.scaleToGeodeticSurface(positions[i], positions[i]);
|
|
}
|
|
return positions;
|
|
}
|
|
|
|
function addNormals(attr, normal, left, front, back, vertexFormat) {
|
|
var normals = attr.normals;
|
|
var tangents = attr.tangents;
|
|
var bitangents = attr.bitangents;
|
|
var forward = Cartesian3.normalize(
|
|
Cartesian3.cross(left, normal, scratch1),
|
|
scratch1
|
|
);
|
|
if (vertexFormat.normal) {
|
|
CorridorGeometryLibrary.addAttribute(normals, normal, front, back);
|
|
}
|
|
if (vertexFormat.tangent) {
|
|
CorridorGeometryLibrary.addAttribute(tangents, forward, front, back);
|
|
}
|
|
if (vertexFormat.bitangent) {
|
|
CorridorGeometryLibrary.addAttribute(bitangents, left, front, back);
|
|
}
|
|
}
|
|
|
|
function combine(computedPositions, vertexFormat, ellipsoid) {
|
|
var positions = computedPositions.positions;
|
|
var corners = computedPositions.corners;
|
|
var endPositions = computedPositions.endPositions;
|
|
var computedLefts = computedPositions.lefts;
|
|
var computedNormals = computedPositions.normals;
|
|
var attributes = new GeometryAttributes();
|
|
var corner;
|
|
var leftCount = 0;
|
|
var rightCount = 0;
|
|
var i;
|
|
var indicesLength = 0;
|
|
var length;
|
|
for (i = 0; i < positions.length; i += 2) {
|
|
length = positions[i].length - 3;
|
|
leftCount += length; //subtracting 3 to account for duplicate points at corners
|
|
indicesLength += length * 2;
|
|
rightCount += positions[i + 1].length - 3;
|
|
}
|
|
leftCount += 3; //add back count for end positions
|
|
rightCount += 3;
|
|
for (i = 0; i < corners.length; i++) {
|
|
corner = corners[i];
|
|
var leftSide = corners[i].leftPositions;
|
|
if (defined(leftSide)) {
|
|
length = leftSide.length;
|
|
leftCount += length;
|
|
indicesLength += length;
|
|
} else {
|
|
length = corners[i].rightPositions.length;
|
|
rightCount += length;
|
|
indicesLength += length;
|
|
}
|
|
}
|
|
|
|
var addEndPositions = defined(endPositions);
|
|
var endPositionLength;
|
|
if (addEndPositions) {
|
|
endPositionLength = endPositions[0].length - 3;
|
|
leftCount += endPositionLength;
|
|
rightCount += endPositionLength;
|
|
endPositionLength /= 3;
|
|
indicesLength += endPositionLength * 6;
|
|
}
|
|
var size = leftCount + rightCount;
|
|
var finalPositions = new Float64Array(size);
|
|
var normals = vertexFormat.normal ? new Float32Array(size) : undefined;
|
|
var tangents = vertexFormat.tangent ? new Float32Array(size) : undefined;
|
|
var bitangents = vertexFormat.bitangent ? new Float32Array(size) : undefined;
|
|
var attr = {
|
|
normals: normals,
|
|
tangents: tangents,
|
|
bitangents: bitangents,
|
|
};
|
|
var front = 0;
|
|
var back = size - 1;
|
|
var UL, LL, UR, LR;
|
|
var normal = cartesian1;
|
|
var left = cartesian2;
|
|
var rightPos, leftPos;
|
|
var halfLength = endPositionLength / 2;
|
|
|
|
var indices = IndexDatatype.createTypedArray(size / 3, indicesLength);
|
|
var index = 0;
|
|
if (addEndPositions) {
|
|
// add rounded end
|
|
leftPos = cartesian3;
|
|
rightPos = cartesian4;
|
|
var firstEndPositions = endPositions[0];
|
|
normal = Cartesian3.fromArray(computedNormals, 0, normal);
|
|
left = Cartesian3.fromArray(computedLefts, 0, left);
|
|
for (i = 0; i < halfLength; i++) {
|
|
leftPos = Cartesian3.fromArray(
|
|
firstEndPositions,
|
|
(halfLength - 1 - i) * 3,
|
|
leftPos
|
|
);
|
|
rightPos = Cartesian3.fromArray(
|
|
firstEndPositions,
|
|
(halfLength + i) * 3,
|
|
rightPos
|
|
);
|
|
CorridorGeometryLibrary.addAttribute(finalPositions, rightPos, front);
|
|
CorridorGeometryLibrary.addAttribute(
|
|
finalPositions,
|
|
leftPos,
|
|
undefined,
|
|
back
|
|
);
|
|
addNormals(attr, normal, left, front, back, vertexFormat);
|
|
|
|
LL = front / 3;
|
|
LR = LL + 1;
|
|
UL = (back - 2) / 3;
|
|
UR = UL - 1;
|
|
indices[index++] = UL;
|
|
indices[index++] = LL;
|
|
indices[index++] = UR;
|
|
indices[index++] = UR;
|
|
indices[index++] = LL;
|
|
indices[index++] = LR;
|
|
|
|
front += 3;
|
|
back -= 3;
|
|
}
|
|
}
|
|
|
|
var posIndex = 0;
|
|
var compIndex = 0;
|
|
var rightEdge = positions[posIndex++]; //add first two edges
|
|
var leftEdge = positions[posIndex++];
|
|
finalPositions.set(rightEdge, front);
|
|
finalPositions.set(leftEdge, back - leftEdge.length + 1);
|
|
|
|
left = Cartesian3.fromArray(computedLefts, compIndex, left);
|
|
var rightNormal;
|
|
var leftNormal;
|
|
length = leftEdge.length - 3;
|
|
for (i = 0; i < length; i += 3) {
|
|
rightNormal = ellipsoid.geodeticSurfaceNormal(
|
|
Cartesian3.fromArray(rightEdge, i, scratch1),
|
|
scratch1
|
|
);
|
|
leftNormal = ellipsoid.geodeticSurfaceNormal(
|
|
Cartesian3.fromArray(leftEdge, length - i, scratch2),
|
|
scratch2
|
|
);
|
|
normal = Cartesian3.normalize(
|
|
Cartesian3.add(rightNormal, leftNormal, normal),
|
|
normal
|
|
);
|
|
addNormals(attr, normal, left, front, back, vertexFormat);
|
|
|
|
LL = front / 3;
|
|
LR = LL + 1;
|
|
UL = (back - 2) / 3;
|
|
UR = UL - 1;
|
|
indices[index++] = UL;
|
|
indices[index++] = LL;
|
|
indices[index++] = UR;
|
|
indices[index++] = UR;
|
|
indices[index++] = LL;
|
|
indices[index++] = LR;
|
|
|
|
front += 3;
|
|
back -= 3;
|
|
}
|
|
|
|
rightNormal = ellipsoid.geodeticSurfaceNormal(
|
|
Cartesian3.fromArray(rightEdge, length, scratch1),
|
|
scratch1
|
|
);
|
|
leftNormal = ellipsoid.geodeticSurfaceNormal(
|
|
Cartesian3.fromArray(leftEdge, length, scratch2),
|
|
scratch2
|
|
);
|
|
normal = Cartesian3.normalize(
|
|
Cartesian3.add(rightNormal, leftNormal, normal),
|
|
normal
|
|
);
|
|
compIndex += 3;
|
|
for (i = 0; i < corners.length; i++) {
|
|
var j;
|
|
corner = corners[i];
|
|
var l = corner.leftPositions;
|
|
var r = corner.rightPositions;
|
|
var pivot;
|
|
var start;
|
|
var outsidePoint = cartesian6;
|
|
var previousPoint = cartesian3;
|
|
var nextPoint = cartesian4;
|
|
normal = Cartesian3.fromArray(computedNormals, compIndex, normal);
|
|
if (defined(l)) {
|
|
addNormals(attr, normal, left, undefined, back, vertexFormat);
|
|
back -= 3;
|
|
pivot = LR;
|
|
start = UR;
|
|
for (j = 0; j < l.length / 3; j++) {
|
|
outsidePoint = Cartesian3.fromArray(l, j * 3, outsidePoint);
|
|
indices[index++] = pivot;
|
|
indices[index++] = start - j - 1;
|
|
indices[index++] = start - j;
|
|
CorridorGeometryLibrary.addAttribute(
|
|
finalPositions,
|
|
outsidePoint,
|
|
undefined,
|
|
back
|
|
);
|
|
previousPoint = Cartesian3.fromArray(
|
|
finalPositions,
|
|
(start - j - 1) * 3,
|
|
previousPoint
|
|
);
|
|
nextPoint = Cartesian3.fromArray(finalPositions, pivot * 3, nextPoint);
|
|
left = Cartesian3.normalize(
|
|
Cartesian3.subtract(previousPoint, nextPoint, left),
|
|
left
|
|
);
|
|
addNormals(attr, normal, left, undefined, back, vertexFormat);
|
|
back -= 3;
|
|
}
|
|
outsidePoint = Cartesian3.fromArray(
|
|
finalPositions,
|
|
pivot * 3,
|
|
outsidePoint
|
|
);
|
|
previousPoint = Cartesian3.subtract(
|
|
Cartesian3.fromArray(finalPositions, start * 3, previousPoint),
|
|
outsidePoint,
|
|
previousPoint
|
|
);
|
|
nextPoint = Cartesian3.subtract(
|
|
Cartesian3.fromArray(finalPositions, (start - j) * 3, nextPoint),
|
|
outsidePoint,
|
|
nextPoint
|
|
);
|
|
left = Cartesian3.normalize(
|
|
Cartesian3.add(previousPoint, nextPoint, left),
|
|
left
|
|
);
|
|
addNormals(attr, normal, left, front, undefined, vertexFormat);
|
|
front += 3;
|
|
} else {
|
|
addNormals(attr, normal, left, front, undefined, vertexFormat);
|
|
front += 3;
|
|
pivot = UR;
|
|
start = LR;
|
|
for (j = 0; j < r.length / 3; j++) {
|
|
outsidePoint = Cartesian3.fromArray(r, j * 3, outsidePoint);
|
|
indices[index++] = pivot;
|
|
indices[index++] = start + j;
|
|
indices[index++] = start + j + 1;
|
|
CorridorGeometryLibrary.addAttribute(
|
|
finalPositions,
|
|
outsidePoint,
|
|
front
|
|
);
|
|
previousPoint = Cartesian3.fromArray(
|
|
finalPositions,
|
|
pivot * 3,
|
|
previousPoint
|
|
);
|
|
nextPoint = Cartesian3.fromArray(
|
|
finalPositions,
|
|
(start + j) * 3,
|
|
nextPoint
|
|
);
|
|
left = Cartesian3.normalize(
|
|
Cartesian3.subtract(previousPoint, nextPoint, left),
|
|
left
|
|
);
|
|
addNormals(attr, normal, left, front, undefined, vertexFormat);
|
|
front += 3;
|
|
}
|
|
outsidePoint = Cartesian3.fromArray(
|
|
finalPositions,
|
|
pivot * 3,
|
|
outsidePoint
|
|
);
|
|
previousPoint = Cartesian3.subtract(
|
|
Cartesian3.fromArray(finalPositions, (start + j) * 3, previousPoint),
|
|
outsidePoint,
|
|
previousPoint
|
|
);
|
|
nextPoint = Cartesian3.subtract(
|
|
Cartesian3.fromArray(finalPositions, start * 3, nextPoint),
|
|
outsidePoint,
|
|
nextPoint
|
|
);
|
|
left = Cartesian3.normalize(
|
|
Cartesian3.negate(Cartesian3.add(nextPoint, previousPoint, left), left),
|
|
left
|
|
);
|
|
addNormals(attr, normal, left, undefined, back, vertexFormat);
|
|
back -= 3;
|
|
}
|
|
rightEdge = positions[posIndex++];
|
|
leftEdge = positions[posIndex++];
|
|
rightEdge.splice(0, 3); //remove duplicate points added by corner
|
|
leftEdge.splice(leftEdge.length - 3, 3);
|
|
finalPositions.set(rightEdge, front);
|
|
finalPositions.set(leftEdge, back - leftEdge.length + 1);
|
|
length = leftEdge.length - 3;
|
|
|
|
compIndex += 3;
|
|
left = Cartesian3.fromArray(computedLefts, compIndex, left);
|
|
for (j = 0; j < leftEdge.length; j += 3) {
|
|
rightNormal = ellipsoid.geodeticSurfaceNormal(
|
|
Cartesian3.fromArray(rightEdge, j, scratch1),
|
|
scratch1
|
|
);
|
|
leftNormal = ellipsoid.geodeticSurfaceNormal(
|
|
Cartesian3.fromArray(leftEdge, length - j, scratch2),
|
|
scratch2
|
|
);
|
|
normal = Cartesian3.normalize(
|
|
Cartesian3.add(rightNormal, leftNormal, normal),
|
|
normal
|
|
);
|
|
addNormals(attr, normal, left, front, back, vertexFormat);
|
|
|
|
LR = front / 3;
|
|
LL = LR - 1;
|
|
UR = (back - 2) / 3;
|
|
UL = UR + 1;
|
|
indices[index++] = UL;
|
|
indices[index++] = LL;
|
|
indices[index++] = UR;
|
|
indices[index++] = UR;
|
|
indices[index++] = LL;
|
|
indices[index++] = LR;
|
|
|
|
front += 3;
|
|
back -= 3;
|
|
}
|
|
front -= 3;
|
|
back += 3;
|
|
}
|
|
normal = Cartesian3.fromArray(
|
|
computedNormals,
|
|
computedNormals.length - 3,
|
|
normal
|
|
);
|
|
addNormals(attr, normal, left, front, back, vertexFormat);
|
|
|
|
if (addEndPositions) {
|
|
// add rounded end
|
|
front += 3;
|
|
back -= 3;
|
|
leftPos = cartesian3;
|
|
rightPos = cartesian4;
|
|
var lastEndPositions = endPositions[1];
|
|
for (i = 0; i < halfLength; i++) {
|
|
leftPos = Cartesian3.fromArray(
|
|
lastEndPositions,
|
|
(endPositionLength - i - 1) * 3,
|
|
leftPos
|
|
);
|
|
rightPos = Cartesian3.fromArray(lastEndPositions, i * 3, rightPos);
|
|
CorridorGeometryLibrary.addAttribute(
|
|
finalPositions,
|
|
leftPos,
|
|
undefined,
|
|
back
|
|
);
|
|
CorridorGeometryLibrary.addAttribute(finalPositions, rightPos, front);
|
|
addNormals(attr, normal, left, front, back, vertexFormat);
|
|
|
|
LR = front / 3;
|
|
LL = LR - 1;
|
|
UR = (back - 2) / 3;
|
|
UL = UR + 1;
|
|
indices[index++] = UL;
|
|
indices[index++] = LL;
|
|
indices[index++] = UR;
|
|
indices[index++] = UR;
|
|
indices[index++] = LL;
|
|
indices[index++] = LR;
|
|
|
|
front += 3;
|
|
back -= 3;
|
|
}
|
|
}
|
|
|
|
attributes.position = new GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.DOUBLE,
|
|
componentsPerAttribute: 3,
|
|
values: finalPositions,
|
|
});
|
|
|
|
if (vertexFormat.st) {
|
|
var st = new Float32Array((size / 3) * 2);
|
|
var rightSt;
|
|
var leftSt;
|
|
var stIndex = 0;
|
|
if (addEndPositions) {
|
|
leftCount /= 3;
|
|
rightCount /= 3;
|
|
var theta = Math.PI / (endPositionLength + 1);
|
|
leftSt = 1 / (leftCount - endPositionLength + 1);
|
|
rightSt = 1 / (rightCount - endPositionLength + 1);
|
|
var a;
|
|
var halfEndPos = endPositionLength / 2;
|
|
for (i = halfEndPos + 1; i < endPositionLength + 1; i++) {
|
|
// lower left rounded end
|
|
a = CesiumMath.PI_OVER_TWO + theta * i;
|
|
st[stIndex++] = rightSt * (1 + Math.cos(a));
|
|
st[stIndex++] = 0.5 * (1 + Math.sin(a));
|
|
}
|
|
for (i = 1; i < rightCount - endPositionLength + 1; i++) {
|
|
// bottom edge
|
|
st[stIndex++] = i * rightSt;
|
|
st[stIndex++] = 0;
|
|
}
|
|
for (i = endPositionLength; i > halfEndPos; i--) {
|
|
// lower right rounded end
|
|
a = CesiumMath.PI_OVER_TWO - i * theta;
|
|
st[stIndex++] = 1 - rightSt * (1 + Math.cos(a));
|
|
st[stIndex++] = 0.5 * (1 + Math.sin(a));
|
|
}
|
|
for (i = halfEndPos; i > 0; i--) {
|
|
// upper right rounded end
|
|
a = CesiumMath.PI_OVER_TWO - theta * i;
|
|
st[stIndex++] = 1 - leftSt * (1 + Math.cos(a));
|
|
st[stIndex++] = 0.5 * (1 + Math.sin(a));
|
|
}
|
|
for (i = leftCount - endPositionLength; i > 0; i--) {
|
|
// top edge
|
|
st[stIndex++] = i * leftSt;
|
|
st[stIndex++] = 1;
|
|
}
|
|
for (i = 1; i < halfEndPos + 1; i++) {
|
|
// upper left rounded end
|
|
a = CesiumMath.PI_OVER_TWO + theta * i;
|
|
st[stIndex++] = leftSt * (1 + Math.cos(a));
|
|
st[stIndex++] = 0.5 * (1 + Math.sin(a));
|
|
}
|
|
} else {
|
|
leftCount /= 3;
|
|
rightCount /= 3;
|
|
leftSt = 1 / (leftCount - 1);
|
|
rightSt = 1 / (rightCount - 1);
|
|
for (i = 0; i < rightCount; i++) {
|
|
// bottom edge
|
|
st[stIndex++] = i * rightSt;
|
|
st[stIndex++] = 0;
|
|
}
|
|
for (i = leftCount; i > 0; i--) {
|
|
// top edge
|
|
st[stIndex++] = (i - 1) * leftSt;
|
|
st[stIndex++] = 1;
|
|
}
|
|
}
|
|
|
|
attributes.st = new GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.FLOAT,
|
|
componentsPerAttribute: 2,
|
|
values: st,
|
|
});
|
|
}
|
|
|
|
if (vertexFormat.normal) {
|
|
attributes.normal = new GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.FLOAT,
|
|
componentsPerAttribute: 3,
|
|
values: attr.normals,
|
|
});
|
|
}
|
|
|
|
if (vertexFormat.tangent) {
|
|
attributes.tangent = new GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.FLOAT,
|
|
componentsPerAttribute: 3,
|
|
values: attr.tangents,
|
|
});
|
|
}
|
|
|
|
if (vertexFormat.bitangent) {
|
|
attributes.bitangent = new GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.FLOAT,
|
|
componentsPerAttribute: 3,
|
|
values: attr.bitangents,
|
|
});
|
|
}
|
|
|
|
return {
|
|
attributes: attributes,
|
|
indices: indices,
|
|
};
|
|
}
|
|
|
|
function extrudedAttributes(attributes, vertexFormat) {
|
|
if (
|
|
!vertexFormat.normal &&
|
|
!vertexFormat.tangent &&
|
|
!vertexFormat.bitangent &&
|
|
!vertexFormat.st
|
|
) {
|
|
return attributes;
|
|
}
|
|
var positions = attributes.position.values;
|
|
var topNormals;
|
|
var topBitangents;
|
|
if (vertexFormat.normal || vertexFormat.bitangent) {
|
|
topNormals = attributes.normal.values;
|
|
topBitangents = attributes.bitangent.values;
|
|
}
|
|
var size = attributes.position.values.length / 18;
|
|
var threeSize = size * 3;
|
|
var twoSize = size * 2;
|
|
var sixSize = threeSize * 2;
|
|
var i;
|
|
if (vertexFormat.normal || vertexFormat.bitangent || vertexFormat.tangent) {
|
|
var normals = vertexFormat.normal
|
|
? new Float32Array(threeSize * 6)
|
|
: undefined;
|
|
var tangents = vertexFormat.tangent
|
|
? new Float32Array(threeSize * 6)
|
|
: undefined;
|
|
var bitangents = vertexFormat.bitangent
|
|
? new Float32Array(threeSize * 6)
|
|
: undefined;
|
|
var topPosition = cartesian1;
|
|
var bottomPosition = cartesian2;
|
|
var previousPosition = cartesian3;
|
|
var normal = cartesian4;
|
|
var tangent = cartesian5;
|
|
var bitangent = cartesian6;
|
|
var attrIndex = sixSize;
|
|
for (i = 0; i < threeSize; i += 3) {
|
|
var attrIndexOffset = attrIndex + sixSize;
|
|
topPosition = Cartesian3.fromArray(positions, i, topPosition);
|
|
bottomPosition = Cartesian3.fromArray(
|
|
positions,
|
|
i + threeSize,
|
|
bottomPosition
|
|
);
|
|
previousPosition = Cartesian3.fromArray(
|
|
positions,
|
|
(i + 3) % threeSize,
|
|
previousPosition
|
|
);
|
|
bottomPosition = Cartesian3.subtract(
|
|
bottomPosition,
|
|
topPosition,
|
|
bottomPosition
|
|
);
|
|
previousPosition = Cartesian3.subtract(
|
|
previousPosition,
|
|
topPosition,
|
|
previousPosition
|
|
);
|
|
normal = Cartesian3.normalize(
|
|
Cartesian3.cross(bottomPosition, previousPosition, normal),
|
|
normal
|
|
);
|
|
if (vertexFormat.normal) {
|
|
CorridorGeometryLibrary.addAttribute(normals, normal, attrIndexOffset);
|
|
CorridorGeometryLibrary.addAttribute(
|
|
normals,
|
|
normal,
|
|
attrIndexOffset + 3
|
|
);
|
|
CorridorGeometryLibrary.addAttribute(normals, normal, attrIndex);
|
|
CorridorGeometryLibrary.addAttribute(normals, normal, attrIndex + 3);
|
|
}
|
|
if (vertexFormat.tangent || vertexFormat.bitangent) {
|
|
bitangent = Cartesian3.fromArray(topNormals, i, bitangent);
|
|
if (vertexFormat.bitangent) {
|
|
CorridorGeometryLibrary.addAttribute(
|
|
bitangents,
|
|
bitangent,
|
|
attrIndexOffset
|
|
);
|
|
CorridorGeometryLibrary.addAttribute(
|
|
bitangents,
|
|
bitangent,
|
|
attrIndexOffset + 3
|
|
);
|
|
CorridorGeometryLibrary.addAttribute(
|
|
bitangents,
|
|
bitangent,
|
|
attrIndex
|
|
);
|
|
CorridorGeometryLibrary.addAttribute(
|
|
bitangents,
|
|
bitangent,
|
|
attrIndex + 3
|
|
);
|
|
}
|
|
|
|
if (vertexFormat.tangent) {
|
|
tangent = Cartesian3.normalize(
|
|
Cartesian3.cross(bitangent, normal, tangent),
|
|
tangent
|
|
);
|
|
CorridorGeometryLibrary.addAttribute(
|
|
tangents,
|
|
tangent,
|
|
attrIndexOffset
|
|
);
|
|
CorridorGeometryLibrary.addAttribute(
|
|
tangents,
|
|
tangent,
|
|
attrIndexOffset + 3
|
|
);
|
|
CorridorGeometryLibrary.addAttribute(tangents, tangent, attrIndex);
|
|
CorridorGeometryLibrary.addAttribute(
|
|
tangents,
|
|
tangent,
|
|
attrIndex + 3
|
|
);
|
|
}
|
|
}
|
|
attrIndex += 6;
|
|
}
|
|
|
|
if (vertexFormat.normal) {
|
|
normals.set(topNormals); //top
|
|
for (i = 0; i < threeSize; i += 3) {
|
|
//bottom normals
|
|
normals[i + threeSize] = -topNormals[i];
|
|
normals[i + threeSize + 1] = -topNormals[i + 1];
|
|
normals[i + threeSize + 2] = -topNormals[i + 2];
|
|
}
|
|
attributes.normal.values = normals;
|
|
} else {
|
|
attributes.normal = undefined;
|
|
}
|
|
|
|
if (vertexFormat.bitangent) {
|
|
bitangents.set(topBitangents); //top
|
|
bitangents.set(topBitangents, threeSize); //bottom
|
|
attributes.bitangent.values = bitangents;
|
|
} else {
|
|
attributes.bitangent = undefined;
|
|
}
|
|
|
|
if (vertexFormat.tangent) {
|
|
var topTangents = attributes.tangent.values;
|
|
tangents.set(topTangents); //top
|
|
tangents.set(topTangents, threeSize); //bottom
|
|
attributes.tangent.values = tangents;
|
|
}
|
|
}
|
|
if (vertexFormat.st) {
|
|
var topSt = attributes.st.values;
|
|
var st = new Float32Array(twoSize * 6);
|
|
st.set(topSt); //top
|
|
st.set(topSt, twoSize); //bottom
|
|
var index = twoSize * 2;
|
|
|
|
for (var j = 0; j < 2; j++) {
|
|
st[index++] = topSt[0];
|
|
st[index++] = topSt[1];
|
|
for (i = 2; i < twoSize; i += 2) {
|
|
var s = topSt[i];
|
|
var t = topSt[i + 1];
|
|
st[index++] = s;
|
|
st[index++] = t;
|
|
st[index++] = s;
|
|
st[index++] = t;
|
|
}
|
|
st[index++] = topSt[0];
|
|
st[index++] = topSt[1];
|
|
}
|
|
attributes.st.values = st;
|
|
}
|
|
|
|
return attributes;
|
|
}
|
|
|
|
function addWallPositions(positions, index, wallPositions) {
|
|
wallPositions[index++] = positions[0];
|
|
wallPositions[index++] = positions[1];
|
|
wallPositions[index++] = positions[2];
|
|
for (var i = 3; i < positions.length; i += 3) {
|
|
var x = positions[i];
|
|
var y = positions[i + 1];
|
|
var z = positions[i + 2];
|
|
wallPositions[index++] = x;
|
|
wallPositions[index++] = y;
|
|
wallPositions[index++] = z;
|
|
wallPositions[index++] = x;
|
|
wallPositions[index++] = y;
|
|
wallPositions[index++] = z;
|
|
}
|
|
wallPositions[index++] = positions[0];
|
|
wallPositions[index++] = positions[1];
|
|
wallPositions[index++] = positions[2];
|
|
|
|
return wallPositions;
|
|
}
|
|
|
|
function computePositionsExtruded(params, vertexFormat) {
|
|
var topVertexFormat = new VertexFormat({
|
|
position: vertexFormat.position,
|
|
normal:
|
|
vertexFormat.normal || vertexFormat.bitangent || params.shadowVolume,
|
|
tangent: vertexFormat.tangent,
|
|
bitangent: vertexFormat.normal || vertexFormat.bitangent,
|
|
st: vertexFormat.st,
|
|
});
|
|
var ellipsoid = params.ellipsoid;
|
|
var computedPositions = CorridorGeometryLibrary.computePositions(params);
|
|
var attr = combine(computedPositions, topVertexFormat, ellipsoid);
|
|
var height = params.height;
|
|
var extrudedHeight = params.extrudedHeight;
|
|
var attributes = attr.attributes;
|
|
var indices = attr.indices;
|
|
var positions = attributes.position.values;
|
|
var length = positions.length;
|
|
var newPositions = new Float64Array(length * 6);
|
|
var extrudedPositions = new Float64Array(length);
|
|
extrudedPositions.set(positions);
|
|
var wallPositions = new Float64Array(length * 4);
|
|
|
|
positions = PolygonPipeline.scaleToGeodeticHeight(
|
|
positions,
|
|
height,
|
|
ellipsoid
|
|
);
|
|
wallPositions = addWallPositions(positions, 0, wallPositions);
|
|
extrudedPositions = PolygonPipeline.scaleToGeodeticHeight(
|
|
extrudedPositions,
|
|
extrudedHeight,
|
|
ellipsoid
|
|
);
|
|
wallPositions = addWallPositions(
|
|
extrudedPositions,
|
|
length * 2,
|
|
wallPositions
|
|
);
|
|
newPositions.set(positions);
|
|
newPositions.set(extrudedPositions, length);
|
|
newPositions.set(wallPositions, length * 2);
|
|
attributes.position.values = newPositions;
|
|
|
|
attributes = extrudedAttributes(attributes, vertexFormat);
|
|
var i;
|
|
var size = length / 3;
|
|
if (params.shadowVolume) {
|
|
var topNormals = attributes.normal.values;
|
|
length = topNormals.length;
|
|
|
|
var extrudeNormals = new Float32Array(length * 6);
|
|
for (i = 0; i < length; i++) {
|
|
topNormals[i] = -topNormals[i];
|
|
}
|
|
//only get normals for bottom layer that's going to be pushed down
|
|
extrudeNormals.set(topNormals, length); //bottom face
|
|
extrudeNormals = addWallPositions(topNormals, length * 4, extrudeNormals); //bottom wall
|
|
attributes.extrudeDirection = new GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.FLOAT,
|
|
componentsPerAttribute: 3,
|
|
values: extrudeNormals,
|
|
});
|
|
if (!vertexFormat.normal) {
|
|
attributes.normal = undefined;
|
|
}
|
|
}
|
|
if (defined(params.offsetAttribute)) {
|
|
var applyOffset = new Uint8Array(size * 6);
|
|
if (params.offsetAttribute === GeometryOffsetAttribute.TOP) {
|
|
applyOffset = arrayFill(applyOffset, 1, 0, size); // top face
|
|
applyOffset = arrayFill(applyOffset, 1, size * 2, size * 4); // top wall
|
|
} else {
|
|
var applyOffsetValue =
|
|
params.offsetAttribute === GeometryOffsetAttribute.NONE ? 0 : 1;
|
|
applyOffset = arrayFill(applyOffset, applyOffsetValue);
|
|
}
|
|
attributes.applyOffset = new GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.UNSIGNED_BYTE,
|
|
componentsPerAttribute: 1,
|
|
values: applyOffset,
|
|
});
|
|
}
|
|
|
|
var iLength = indices.length;
|
|
var twoSize = size + size;
|
|
var newIndices = IndexDatatype.createTypedArray(
|
|
newPositions.length / 3,
|
|
iLength * 2 + twoSize * 3
|
|
);
|
|
newIndices.set(indices);
|
|
var index = iLength;
|
|
for (i = 0; i < iLength; i += 3) {
|
|
// bottom indices
|
|
var v0 = indices[i];
|
|
var v1 = indices[i + 1];
|
|
var v2 = indices[i + 2];
|
|
newIndices[index++] = v2 + size;
|
|
newIndices[index++] = v1 + size;
|
|
newIndices[index++] = v0 + size;
|
|
}
|
|
|
|
var UL, LL, UR, LR;
|
|
|
|
for (i = 0; i < twoSize; i += 2) {
|
|
//wall indices
|
|
UL = i + twoSize;
|
|
LL = UL + twoSize;
|
|
UR = UL + 1;
|
|
LR = LL + 1;
|
|
newIndices[index++] = UL;
|
|
newIndices[index++] = LL;
|
|
newIndices[index++] = UR;
|
|
newIndices[index++] = UR;
|
|
newIndices[index++] = LL;
|
|
newIndices[index++] = LR;
|
|
}
|
|
|
|
return {
|
|
attributes: attributes,
|
|
indices: newIndices,
|
|
};
|
|
}
|
|
|
|
var scratchCartesian1 = new Cartesian3();
|
|
var scratchCartesian2 = new Cartesian3();
|
|
var scratchCartographic = new Cartographic();
|
|
|
|
function computeOffsetPoints(
|
|
position1,
|
|
position2,
|
|
ellipsoid,
|
|
halfWidth,
|
|
min,
|
|
max
|
|
) {
|
|
// Compute direction of offset the point
|
|
var direction = Cartesian3.subtract(position2, position1, scratchCartesian1);
|
|
Cartesian3.normalize(direction, direction);
|
|
var normal = ellipsoid.geodeticSurfaceNormal(position1, scratchCartesian2);
|
|
var offsetDirection = Cartesian3.cross(direction, normal, scratchCartesian1);
|
|
Cartesian3.multiplyByScalar(offsetDirection, halfWidth, offsetDirection);
|
|
|
|
var minLat = min.latitude;
|
|
var minLon = min.longitude;
|
|
var maxLat = max.latitude;
|
|
var maxLon = max.longitude;
|
|
|
|
// Compute 2 offset points
|
|
Cartesian3.add(position1, offsetDirection, scratchCartesian2);
|
|
ellipsoid.cartesianToCartographic(scratchCartesian2, scratchCartographic);
|
|
|
|
var lat = scratchCartographic.latitude;
|
|
var lon = scratchCartographic.longitude;
|
|
minLat = Math.min(minLat, lat);
|
|
minLon = Math.min(minLon, lon);
|
|
maxLat = Math.max(maxLat, lat);
|
|
maxLon = Math.max(maxLon, lon);
|
|
|
|
Cartesian3.subtract(position1, offsetDirection, scratchCartesian2);
|
|
ellipsoid.cartesianToCartographic(scratchCartesian2, scratchCartographic);
|
|
|
|
lat = scratchCartographic.latitude;
|
|
lon = scratchCartographic.longitude;
|
|
minLat = Math.min(minLat, lat);
|
|
minLon = Math.min(minLon, lon);
|
|
maxLat = Math.max(maxLat, lat);
|
|
maxLon = Math.max(maxLon, lon);
|
|
|
|
min.latitude = minLat;
|
|
min.longitude = minLon;
|
|
max.latitude = maxLat;
|
|
max.longitude = maxLon;
|
|
}
|
|
|
|
var scratchCartesianOffset = new Cartesian3();
|
|
var scratchCartesianEnds = new Cartesian3();
|
|
var scratchCartographicMin = new Cartographic();
|
|
var scratchCartographicMax = new Cartographic();
|
|
|
|
function computeRectangle(positions, ellipsoid, width, cornerType, result) {
|
|
positions = scaleToSurface(positions, ellipsoid);
|
|
var cleanPositions = arrayRemoveDuplicates(
|
|
positions,
|
|
Cartesian3.equalsEpsilon
|
|
);
|
|
var length = cleanPositions.length;
|
|
if (length < 2 || width <= 0) {
|
|
return new Rectangle();
|
|
}
|
|
var halfWidth = width * 0.5;
|
|
|
|
scratchCartographicMin.latitude = Number.POSITIVE_INFINITY;
|
|
scratchCartographicMin.longitude = Number.POSITIVE_INFINITY;
|
|
scratchCartographicMax.latitude = Number.NEGATIVE_INFINITY;
|
|
scratchCartographicMax.longitude = Number.NEGATIVE_INFINITY;
|
|
|
|
var lat, lon;
|
|
if (cornerType === CornerType.ROUNDED) {
|
|
// Compute start cap
|
|
var first = cleanPositions[0];
|
|
Cartesian3.subtract(first, cleanPositions[1], scratchCartesianOffset);
|
|
Cartesian3.normalize(scratchCartesianOffset, scratchCartesianOffset);
|
|
Cartesian3.multiplyByScalar(
|
|
scratchCartesianOffset,
|
|
halfWidth,
|
|
scratchCartesianOffset
|
|
);
|
|
Cartesian3.add(first, scratchCartesianOffset, scratchCartesianEnds);
|
|
|
|
ellipsoid.cartesianToCartographic(
|
|
scratchCartesianEnds,
|
|
scratchCartographic
|
|
);
|
|
lat = scratchCartographic.latitude;
|
|
lon = scratchCartographic.longitude;
|
|
scratchCartographicMin.latitude = Math.min(
|
|
scratchCartographicMin.latitude,
|
|
lat
|
|
);
|
|
scratchCartographicMin.longitude = Math.min(
|
|
scratchCartographicMin.longitude,
|
|
lon
|
|
);
|
|
scratchCartographicMax.latitude = Math.max(
|
|
scratchCartographicMax.latitude,
|
|
lat
|
|
);
|
|
scratchCartographicMax.longitude = Math.max(
|
|
scratchCartographicMax.longitude,
|
|
lon
|
|
);
|
|
}
|
|
|
|
// Compute the rest
|
|
for (var i = 0; i < length - 1; ++i) {
|
|
computeOffsetPoints(
|
|
cleanPositions[i],
|
|
cleanPositions[i + 1],
|
|
ellipsoid,
|
|
halfWidth,
|
|
scratchCartographicMin,
|
|
scratchCartographicMax
|
|
);
|
|
}
|
|
|
|
// Compute ending point
|
|
var last = cleanPositions[length - 1];
|
|
Cartesian3.subtract(last, cleanPositions[length - 2], scratchCartesianOffset);
|
|
Cartesian3.normalize(scratchCartesianOffset, scratchCartesianOffset);
|
|
Cartesian3.multiplyByScalar(
|
|
scratchCartesianOffset,
|
|
halfWidth,
|
|
scratchCartesianOffset
|
|
);
|
|
Cartesian3.add(last, scratchCartesianOffset, scratchCartesianEnds);
|
|
computeOffsetPoints(
|
|
last,
|
|
scratchCartesianEnds,
|
|
ellipsoid,
|
|
halfWidth,
|
|
scratchCartographicMin,
|
|
scratchCartographicMax
|
|
);
|
|
|
|
if (cornerType === CornerType.ROUNDED) {
|
|
// Compute end cap
|
|
ellipsoid.cartesianToCartographic(
|
|
scratchCartesianEnds,
|
|
scratchCartographic
|
|
);
|
|
lat = scratchCartographic.latitude;
|
|
lon = scratchCartographic.longitude;
|
|
scratchCartographicMin.latitude = Math.min(
|
|
scratchCartographicMin.latitude,
|
|
lat
|
|
);
|
|
scratchCartographicMin.longitude = Math.min(
|
|
scratchCartographicMin.longitude,
|
|
lon
|
|
);
|
|
scratchCartographicMax.latitude = Math.max(
|
|
scratchCartographicMax.latitude,
|
|
lat
|
|
);
|
|
scratchCartographicMax.longitude = Math.max(
|
|
scratchCartographicMax.longitude,
|
|
lon
|
|
);
|
|
}
|
|
|
|
var rectangle = defined(result) ? result : new Rectangle();
|
|
rectangle.north = scratchCartographicMax.latitude;
|
|
rectangle.south = scratchCartographicMin.latitude;
|
|
rectangle.east = scratchCartographicMax.longitude;
|
|
rectangle.west = scratchCartographicMin.longitude;
|
|
|
|
return rectangle;
|
|
}
|
|
|
|
/**
|
|
* A description of a corridor. Corridor geometry can be rendered with both {@link Primitive} and {@link GroundPrimitive}.
|
|
*
|
|
* @alias CorridorGeometry
|
|
* @constructor
|
|
*
|
|
* @param {Object} options Object with the following properties:
|
|
* @param {Cartesian3[]} options.positions An array of positions that define the center of the corridor.
|
|
* @param {Number} options.width The distance between the edges of the corridor in meters.
|
|
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference.
|
|
* @param {Number} [options.granularity=CesiumMath.RADIANS_PER_DEGREE] The distance, in radians, between each latitude and longitude. Determines the number of positions in the buffer.
|
|
* @param {Number} [options.height=0] The distance in meters between the ellipsoid surface and the positions.
|
|
* @param {Number} [options.extrudedHeight] The distance in meters between the ellipsoid surface and the extruded face.
|
|
* @param {VertexFormat} [options.vertexFormat=VertexFormat.DEFAULT] The vertex attributes to be computed.
|
|
* @param {CornerType} [options.cornerType=CornerType.ROUNDED] Determines the style of the corners.
|
|
*
|
|
* @see CorridorGeometry.createGeometry
|
|
* @see Packable
|
|
*
|
|
* @demo {@link https://sandcastle.cesium.com/index.html?src=Corridor.html|Cesium Sandcastle Corridor Demo}
|
|
*
|
|
* @example
|
|
* var corridor = new Cesium.CorridorGeometry({
|
|
* vertexFormat : Cesium.VertexFormat.POSITION_ONLY,
|
|
* positions : Cesium.Cartesian3.fromDegreesArray([-72.0, 40.0, -70.0, 35.0]),
|
|
* width : 100000
|
|
* });
|
|
*/
|
|
function CorridorGeometry(options) {
|
|
options = defaultValue(options, defaultValue.EMPTY_OBJECT);
|
|
var positions = options.positions;
|
|
var width = options.width;
|
|
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.defined("options.positions", positions);
|
|
Check.defined("options.width", width);
|
|
//>>includeEnd('debug');
|
|
|
|
var height = defaultValue(options.height, 0.0);
|
|
var extrudedHeight = defaultValue(options.extrudedHeight, height);
|
|
|
|
this._positions = positions;
|
|
this._ellipsoid = Ellipsoid.clone(
|
|
defaultValue(options.ellipsoid, Ellipsoid.WGS84)
|
|
);
|
|
this._vertexFormat = VertexFormat.clone(
|
|
defaultValue(options.vertexFormat, VertexFormat.DEFAULT)
|
|
);
|
|
this._width = width;
|
|
this._height = Math.max(height, extrudedHeight);
|
|
this._extrudedHeight = Math.min(height, extrudedHeight);
|
|
this._cornerType = defaultValue(options.cornerType, CornerType.ROUNDED);
|
|
this._granularity = defaultValue(
|
|
options.granularity,
|
|
CesiumMath.RADIANS_PER_DEGREE
|
|
);
|
|
this._shadowVolume = defaultValue(options.shadowVolume, false);
|
|
this._workerName = "createCorridorGeometry";
|
|
this._offsetAttribute = options.offsetAttribute;
|
|
this._rectangle = undefined;
|
|
|
|
/**
|
|
* The number of elements used to pack the object into an array.
|
|
* @type {Number}
|
|
*/
|
|
this.packedLength =
|
|
1 +
|
|
positions.length * Cartesian3.packedLength +
|
|
Ellipsoid.packedLength +
|
|
VertexFormat.packedLength +
|
|
7;
|
|
}
|
|
|
|
/**
|
|
* Stores the provided instance into the provided array.
|
|
*
|
|
* @param {CorridorGeometry} value The value to pack.
|
|
* @param {Number[]} array The array to pack into.
|
|
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
|
|
*
|
|
* @returns {Number[]} The array that was packed into
|
|
*/
|
|
CorridorGeometry.pack = function (value, array, startingIndex) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.defined("value", value);
|
|
Check.defined("array", array);
|
|
//>>includeEnd('debug');
|
|
|
|
startingIndex = defaultValue(startingIndex, 0);
|
|
|
|
var positions = value._positions;
|
|
var length = positions.length;
|
|
array[startingIndex++] = length;
|
|
|
|
for (var i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) {
|
|
Cartesian3.pack(positions[i], array, startingIndex);
|
|
}
|
|
|
|
Ellipsoid.pack(value._ellipsoid, array, startingIndex);
|
|
startingIndex += Ellipsoid.packedLength;
|
|
|
|
VertexFormat.pack(value._vertexFormat, array, startingIndex);
|
|
startingIndex += VertexFormat.packedLength;
|
|
|
|
array[startingIndex++] = value._width;
|
|
array[startingIndex++] = value._height;
|
|
array[startingIndex++] = value._extrudedHeight;
|
|
array[startingIndex++] = value._cornerType;
|
|
array[startingIndex++] = value._granularity;
|
|
array[startingIndex++] = value._shadowVolume ? 1.0 : 0.0;
|
|
array[startingIndex] = defaultValue(value._offsetAttribute, -1);
|
|
|
|
return array;
|
|
};
|
|
|
|
var scratchEllipsoid = Ellipsoid.clone(Ellipsoid.UNIT_SPHERE);
|
|
var scratchVertexFormat = new VertexFormat();
|
|
var scratchOptions = {
|
|
positions: undefined,
|
|
ellipsoid: scratchEllipsoid,
|
|
vertexFormat: scratchVertexFormat,
|
|
width: undefined,
|
|
height: undefined,
|
|
extrudedHeight: undefined,
|
|
cornerType: undefined,
|
|
granularity: undefined,
|
|
shadowVolume: undefined,
|
|
offsetAttribute: undefined,
|
|
};
|
|
|
|
/**
|
|
* Retrieves an instance from a packed array.
|
|
*
|
|
* @param {Number[]} array The packed array.
|
|
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
|
|
* @param {CorridorGeometry} [result] The object into which to store the result.
|
|
* @returns {CorridorGeometry} The modified result parameter or a new CorridorGeometry instance if one was not provided.
|
|
*/
|
|
CorridorGeometry.unpack = function (array, startingIndex, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.defined("array", array);
|
|
//>>includeEnd('debug');
|
|
|
|
startingIndex = defaultValue(startingIndex, 0);
|
|
|
|
var length = array[startingIndex++];
|
|
var positions = new Array(length);
|
|
|
|
for (var i = 0; i < length; ++i, startingIndex += Cartesian3.packedLength) {
|
|
positions[i] = Cartesian3.unpack(array, startingIndex);
|
|
}
|
|
|
|
var ellipsoid = Ellipsoid.unpack(array, startingIndex, scratchEllipsoid);
|
|
startingIndex += Ellipsoid.packedLength;
|
|
|
|
var vertexFormat = VertexFormat.unpack(
|
|
array,
|
|
startingIndex,
|
|
scratchVertexFormat
|
|
);
|
|
startingIndex += VertexFormat.packedLength;
|
|
|
|
var width = array[startingIndex++];
|
|
var height = array[startingIndex++];
|
|
var extrudedHeight = array[startingIndex++];
|
|
var cornerType = array[startingIndex++];
|
|
var granularity = array[startingIndex++];
|
|
var shadowVolume = array[startingIndex++] === 1.0;
|
|
var offsetAttribute = array[startingIndex];
|
|
|
|
if (!defined(result)) {
|
|
scratchOptions.positions = positions;
|
|
scratchOptions.width = width;
|
|
scratchOptions.height = height;
|
|
scratchOptions.extrudedHeight = extrudedHeight;
|
|
scratchOptions.cornerType = cornerType;
|
|
scratchOptions.granularity = granularity;
|
|
scratchOptions.shadowVolume = shadowVolume;
|
|
scratchOptions.offsetAttribute =
|
|
offsetAttribute === -1 ? undefined : offsetAttribute;
|
|
|
|
return new CorridorGeometry(scratchOptions);
|
|
}
|
|
|
|
result._positions = positions;
|
|
result._ellipsoid = Ellipsoid.clone(ellipsoid, result._ellipsoid);
|
|
result._vertexFormat = VertexFormat.clone(vertexFormat, result._vertexFormat);
|
|
result._width = width;
|
|
result._height = height;
|
|
result._extrudedHeight = extrudedHeight;
|
|
result._cornerType = cornerType;
|
|
result._granularity = granularity;
|
|
result._shadowVolume = shadowVolume;
|
|
result._offsetAttribute =
|
|
offsetAttribute === -1 ? undefined : offsetAttribute;
|
|
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Computes the bounding rectangle given the provided options
|
|
*
|
|
* @param {Object} options Object with the following properties:
|
|
* @param {Cartesian3[]} options.positions An array of positions that define the center of the corridor.
|
|
* @param {Number} options.width The distance between the edges of the corridor in meters.
|
|
* @param {Ellipsoid} [options.ellipsoid=Ellipsoid.WGS84] The ellipsoid to be used as a reference.
|
|
* @param {CornerType} [options.cornerType=CornerType.ROUNDED] Determines the style of the corners.
|
|
* @param {Rectangle} [result] An object in which to store the result.
|
|
*
|
|
* @returns {Rectangle} The result rectangle.
|
|
*/
|
|
CorridorGeometry.computeRectangle = function (options, result) {
|
|
options = defaultValue(options, defaultValue.EMPTY_OBJECT);
|
|
var positions = options.positions;
|
|
var width = options.width;
|
|
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.defined("options.positions", positions);
|
|
Check.defined("options.width", width);
|
|
//>>includeEnd('debug');
|
|
|
|
var ellipsoid = defaultValue(options.ellipsoid, Ellipsoid.WGS84);
|
|
var cornerType = defaultValue(options.cornerType, CornerType.ROUNDED);
|
|
|
|
return computeRectangle(positions, ellipsoid, width, cornerType, result);
|
|
};
|
|
|
|
/**
|
|
* Computes the geometric representation of a corridor, including its vertices, indices, and a bounding sphere.
|
|
*
|
|
* @param {CorridorGeometry} corridorGeometry A description of the corridor.
|
|
* @returns {Geometry|undefined} The computed vertices and indices.
|
|
*/
|
|
CorridorGeometry.createGeometry = function (corridorGeometry) {
|
|
var positions = corridorGeometry._positions;
|
|
var width = corridorGeometry._width;
|
|
var ellipsoid = corridorGeometry._ellipsoid;
|
|
|
|
positions = scaleToSurface(positions, ellipsoid);
|
|
var cleanPositions = arrayRemoveDuplicates(
|
|
positions,
|
|
Cartesian3.equalsEpsilon
|
|
);
|
|
|
|
if (cleanPositions.length < 2 || width <= 0) {
|
|
return;
|
|
}
|
|
|
|
var height = corridorGeometry._height;
|
|
var extrudedHeight = corridorGeometry._extrudedHeight;
|
|
var extrude = !CesiumMath.equalsEpsilon(
|
|
height,
|
|
extrudedHeight,
|
|
0,
|
|
CesiumMath.EPSILON2
|
|
);
|
|
|
|
var vertexFormat = corridorGeometry._vertexFormat;
|
|
var params = {
|
|
ellipsoid: ellipsoid,
|
|
positions: cleanPositions,
|
|
width: width,
|
|
cornerType: corridorGeometry._cornerType,
|
|
granularity: corridorGeometry._granularity,
|
|
saveAttributes: true,
|
|
};
|
|
var attr;
|
|
if (extrude) {
|
|
params.height = height;
|
|
params.extrudedHeight = extrudedHeight;
|
|
params.shadowVolume = corridorGeometry._shadowVolume;
|
|
params.offsetAttribute = corridorGeometry._offsetAttribute;
|
|
attr = computePositionsExtruded(params, vertexFormat);
|
|
} else {
|
|
var computedPositions = CorridorGeometryLibrary.computePositions(params);
|
|
attr = combine(computedPositions, vertexFormat, ellipsoid);
|
|
attr.attributes.position.values = PolygonPipeline.scaleToGeodeticHeight(
|
|
attr.attributes.position.values,
|
|
height,
|
|
ellipsoid
|
|
);
|
|
|
|
if (defined(corridorGeometry._offsetAttribute)) {
|
|
var applyOffsetValue =
|
|
corridorGeometry._offsetAttribute === GeometryOffsetAttribute.NONE
|
|
? 0
|
|
: 1;
|
|
var length = attr.attributes.position.values.length;
|
|
var applyOffset = new Uint8Array(length / 3);
|
|
arrayFill(applyOffset, applyOffsetValue);
|
|
attr.attributes.applyOffset = new GeometryAttribute({
|
|
componentDatatype: ComponentDatatype.UNSIGNED_BYTE,
|
|
componentsPerAttribute: 1,
|
|
values: applyOffset,
|
|
});
|
|
}
|
|
}
|
|
var attributes = attr.attributes;
|
|
var boundingSphere = BoundingSphere.fromVertices(
|
|
attributes.position.values,
|
|
undefined,
|
|
3
|
|
);
|
|
if (!vertexFormat.position) {
|
|
attr.attributes.position.values = undefined;
|
|
}
|
|
|
|
return new Geometry({
|
|
attributes: attributes,
|
|
indices: attr.indices,
|
|
primitiveType: PrimitiveType.TRIANGLES,
|
|
boundingSphere: boundingSphere,
|
|
offsetAttribute: corridorGeometry._offsetAttribute,
|
|
});
|
|
};
|
|
|
|
/**
|
|
* @private
|
|
*/
|
|
CorridorGeometry.createShadowVolume = function (
|
|
corridorGeometry,
|
|
minHeightFunc,
|
|
maxHeightFunc
|
|
) {
|
|
var granularity = corridorGeometry._granularity;
|
|
var ellipsoid = corridorGeometry._ellipsoid;
|
|
|
|
var minHeight = minHeightFunc(granularity, ellipsoid);
|
|
var maxHeight = maxHeightFunc(granularity, ellipsoid);
|
|
|
|
return new CorridorGeometry({
|
|
positions: corridorGeometry._positions,
|
|
width: corridorGeometry._width,
|
|
cornerType: corridorGeometry._cornerType,
|
|
ellipsoid: ellipsoid,
|
|
granularity: granularity,
|
|
extrudedHeight: minHeight,
|
|
height: maxHeight,
|
|
vertexFormat: VertexFormat.POSITION_ONLY,
|
|
shadowVolume: true,
|
|
});
|
|
};
|
|
|
|
Object.defineProperties(CorridorGeometry.prototype, {
|
|
/**
|
|
* @private
|
|
*/
|
|
rectangle: {
|
|
get: function () {
|
|
if (!defined(this._rectangle)) {
|
|
this._rectangle = computeRectangle(
|
|
this._positions,
|
|
this._ellipsoid,
|
|
this._width,
|
|
this._cornerType
|
|
);
|
|
}
|
|
return this._rectangle;
|
|
},
|
|
},
|
|
/**
|
|
* For remapping texture coordinates when rendering CorridorGeometries as GroundPrimitives.
|
|
*
|
|
* Corridors don't support stRotation,
|
|
* so just return the corners of the original system.
|
|
* @private
|
|
*/
|
|
textureCoordinateRotationPoints: {
|
|
get: function () {
|
|
return [0, 0, 0, 1, 1, 0];
|
|
},
|
|
},
|
|
});
|
|
export default CorridorGeometry;
|