You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

467 lines
16 KiB
JavaScript

import arrayFill from "./arrayFill.js";
import BoundingSphere from "./BoundingSphere.js";
import Cartesian3 from "./Cartesian3.js";
import ComponentDatatype from "./ComponentDatatype.js";
import defaultValue from "./defaultValue.js";
import defined from "./defined.js";
import DeveloperError from "./DeveloperError.js";
import Ellipsoid from "./Ellipsoid.js";
import Geometry from "./Geometry.js";
import GeometryAttribute from "./GeometryAttribute.js";
import GeometryAttributes from "./GeometryAttributes.js";
import GeometryOffsetAttribute from "./GeometryOffsetAttribute.js";
import IndexDatatype from "./IndexDatatype.js";
import CesiumMath from "./Math.js";
import PrimitiveType from "./PrimitiveType.js";
var defaultRadii = new Cartesian3(1.0, 1.0, 1.0);
var cos = Math.cos;
var sin = Math.sin;
/**
* A description of the outline of an ellipsoid centered at the origin.
*
* @alias EllipsoidOutlineGeometry
* @constructor
*
* @param {Object} [options] Object with the following properties:
* @param {Cartesian3} [options.radii=Cartesian3(1.0, 1.0, 1.0)] The radii of the ellipsoid in the x, y, and z directions.
* @param {Cartesian3} [options.innerRadii=options.radii] The inner radii of the ellipsoid in the x, y, and z directions.
* @param {Number} [options.minimumClock=0.0] The minimum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
* @param {Number} [options.maximumClock=2*PI] The maximum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
* @param {Number} [options.minimumCone=0.0] The minimum angle measured from the positive z-axis and toward the negative z-axis.
* @param {Number} [options.maximumCone=PI] The maximum angle measured from the positive z-axis and toward the negative z-axis.
* @param {Number} [options.stackPartitions=10] The count of stacks for the ellipsoid (1 greater than the number of parallel lines).
* @param {Number} [options.slicePartitions=8] The count of slices for the ellipsoid (Equal to the number of radial lines).
* @param {Number} [options.subdivisions=128] The number of points per line, determining the granularity of the curvature.
*
* @exception {DeveloperError} options.stackPartitions must be greater than or equal to one.
* @exception {DeveloperError} options.slicePartitions must be greater than or equal to zero.
* @exception {DeveloperError} options.subdivisions must be greater than or equal to zero.
*
* @example
* var ellipsoid = new Cesium.EllipsoidOutlineGeometry({
* radii : new Cesium.Cartesian3(1000000.0, 500000.0, 500000.0),
* stackPartitions: 6,
* slicePartitions: 5
* });
* var geometry = Cesium.EllipsoidOutlineGeometry.createGeometry(ellipsoid);
*/
function EllipsoidOutlineGeometry(options) {
options = defaultValue(options, defaultValue.EMPTY_OBJECT);
var radii = defaultValue(options.radii, defaultRadii);
var innerRadii = defaultValue(options.innerRadii, radii);
var minimumClock = defaultValue(options.minimumClock, 0.0);
var maximumClock = defaultValue(options.maximumClock, CesiumMath.TWO_PI);
var minimumCone = defaultValue(options.minimumCone, 0.0);
var maximumCone = defaultValue(options.maximumCone, CesiumMath.PI);
var stackPartitions = Math.round(defaultValue(options.stackPartitions, 10));
var slicePartitions = Math.round(defaultValue(options.slicePartitions, 8));
var subdivisions = Math.round(defaultValue(options.subdivisions, 128));
//>>includeStart('debug', pragmas.debug);
if (stackPartitions < 1) {
throw new DeveloperError("options.stackPartitions cannot be less than 1");
}
if (slicePartitions < 0) {
throw new DeveloperError("options.slicePartitions cannot be less than 0");
}
if (subdivisions < 0) {
throw new DeveloperError(
"options.subdivisions must be greater than or equal to zero."
);
}
if (
defined(options.offsetAttribute) &&
options.offsetAttribute === GeometryOffsetAttribute.TOP
) {
throw new DeveloperError(
"GeometryOffsetAttribute.TOP is not a supported options.offsetAttribute for this geometry."
);
}
//>>includeEnd('debug');
this._radii = Cartesian3.clone(radii);
this._innerRadii = Cartesian3.clone(innerRadii);
this._minimumClock = minimumClock;
this._maximumClock = maximumClock;
this._minimumCone = minimumCone;
this._maximumCone = maximumCone;
this._stackPartitions = stackPartitions;
this._slicePartitions = slicePartitions;
this._subdivisions = subdivisions;
this._offsetAttribute = options.offsetAttribute;
this._workerName = "createEllipsoidOutlineGeometry";
}
/**
* The number of elements used to pack the object into an array.
* @type {Number}
*/
EllipsoidOutlineGeometry.packedLength = 2 * Cartesian3.packedLength + 8;
/**
* Stores the provided instance into the provided array.
*
* @param {EllipsoidOutlineGeometry} value The value to pack.
* @param {Number[]} array The array to pack into.
* @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
*
* @returns {Number[]} The array that was packed into
*/
EllipsoidOutlineGeometry.pack = function (value, array, startingIndex) {
//>>includeStart('debug', pragmas.debug);
if (!defined(value)) {
throw new DeveloperError("value is required");
}
if (!defined(array)) {
throw new DeveloperError("array is required");
}
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
Cartesian3.pack(value._radii, array, startingIndex);
startingIndex += Cartesian3.packedLength;
Cartesian3.pack(value._innerRadii, array, startingIndex);
startingIndex += Cartesian3.packedLength;
array[startingIndex++] = value._minimumClock;
array[startingIndex++] = value._maximumClock;
array[startingIndex++] = value._minimumCone;
array[startingIndex++] = value._maximumCone;
array[startingIndex++] = value._stackPartitions;
array[startingIndex++] = value._slicePartitions;
array[startingIndex++] = value._subdivisions;
array[startingIndex] = defaultValue(value._offsetAttribute, -1);
return array;
};
var scratchRadii = new Cartesian3();
var scratchInnerRadii = new Cartesian3();
var scratchOptions = {
radii: scratchRadii,
innerRadii: scratchInnerRadii,
minimumClock: undefined,
maximumClock: undefined,
minimumCone: undefined,
maximumCone: undefined,
stackPartitions: undefined,
slicePartitions: undefined,
subdivisions: undefined,
offsetAttribute: undefined,
};
/**
* Retrieves an instance from a packed array.
*
* @param {Number[]} array The packed array.
* @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
* @param {EllipsoidOutlineGeometry} [result] The object into which to store the result.
* @returns {EllipsoidOutlineGeometry} The modified result parameter or a new EllipsoidOutlineGeometry instance if one was not provided.
*/
EllipsoidOutlineGeometry.unpack = function (array, startingIndex, result) {
//>>includeStart('debug', pragmas.debug);
if (!defined(array)) {
throw new DeveloperError("array is required");
}
//>>includeEnd('debug');
startingIndex = defaultValue(startingIndex, 0);
var radii = Cartesian3.unpack(array, startingIndex, scratchRadii);
startingIndex += Cartesian3.packedLength;
var innerRadii = Cartesian3.unpack(array, startingIndex, scratchInnerRadii);
startingIndex += Cartesian3.packedLength;
var minimumClock = array[startingIndex++];
var maximumClock = array[startingIndex++];
var minimumCone = array[startingIndex++];
var maximumCone = array[startingIndex++];
var stackPartitions = array[startingIndex++];
var slicePartitions = array[startingIndex++];
var subdivisions = array[startingIndex++];
var offsetAttribute = array[startingIndex];
if (!defined(result)) {
scratchOptions.minimumClock = minimumClock;
scratchOptions.maximumClock = maximumClock;
scratchOptions.minimumCone = minimumCone;
scratchOptions.maximumCone = maximumCone;
scratchOptions.stackPartitions = stackPartitions;
scratchOptions.slicePartitions = slicePartitions;
scratchOptions.subdivisions = subdivisions;
scratchOptions.offsetAttribute =
offsetAttribute === -1 ? undefined : offsetAttribute;
return new EllipsoidOutlineGeometry(scratchOptions);
}
result._radii = Cartesian3.clone(radii, result._radii);
result._innerRadii = Cartesian3.clone(innerRadii, result._innerRadii);
result._minimumClock = minimumClock;
result._maximumClock = maximumClock;
result._minimumCone = minimumCone;
result._maximumCone = maximumCone;
result._stackPartitions = stackPartitions;
result._slicePartitions = slicePartitions;
result._subdivisions = subdivisions;
result._offsetAttribute =
offsetAttribute === -1 ? undefined : offsetAttribute;
return result;
};
/**
* Computes the geometric representation of an outline of an ellipsoid, including its vertices, indices, and a bounding sphere.
*
* @param {EllipsoidOutlineGeometry} ellipsoidGeometry A description of the ellipsoid outline.
* @returns {Geometry|undefined} The computed vertices and indices.
*/
EllipsoidOutlineGeometry.createGeometry = function (ellipsoidGeometry) {
var radii = ellipsoidGeometry._radii;
if (radii.x <= 0 || radii.y <= 0 || radii.z <= 0) {
return;
}
var innerRadii = ellipsoidGeometry._innerRadii;
if (innerRadii.x <= 0 || innerRadii.y <= 0 || innerRadii.z <= 0) {
return;
}
var minimumClock = ellipsoidGeometry._minimumClock;
var maximumClock = ellipsoidGeometry._maximumClock;
var minimumCone = ellipsoidGeometry._minimumCone;
var maximumCone = ellipsoidGeometry._maximumCone;
var subdivisions = ellipsoidGeometry._subdivisions;
var ellipsoid = Ellipsoid.fromCartesian3(radii);
// Add an extra slice and stack to remain consistent with EllipsoidGeometry
var slicePartitions = ellipsoidGeometry._slicePartitions + 1;
var stackPartitions = ellipsoidGeometry._stackPartitions + 1;
slicePartitions = Math.round(
(slicePartitions * Math.abs(maximumClock - minimumClock)) /
CesiumMath.TWO_PI
);
stackPartitions = Math.round(
(stackPartitions * Math.abs(maximumCone - minimumCone)) / CesiumMath.PI
);
if (slicePartitions < 2) {
slicePartitions = 2;
}
if (stackPartitions < 2) {
stackPartitions = 2;
}
var extraIndices = 0;
var vertexMultiplier = 1.0;
var hasInnerSurface =
innerRadii.x !== radii.x ||
innerRadii.y !== radii.y ||
innerRadii.z !== radii.z;
var isTopOpen = false;
var isBotOpen = false;
if (hasInnerSurface) {
vertexMultiplier = 2.0;
// Add 2x slicePartitions to connect the top/bottom of the outer to
// the top/bottom of the inner
if (minimumCone > 0.0) {
isTopOpen = true;
extraIndices += slicePartitions;
}
if (maximumCone < Math.PI) {
isBotOpen = true;
extraIndices += slicePartitions;
}
}
var vertexCount =
subdivisions * vertexMultiplier * (stackPartitions + slicePartitions);
var positions = new Float64Array(vertexCount * 3);
// Multiply by two because two points define each line segment
var numIndices =
2 *
(vertexCount +
extraIndices -
(slicePartitions + stackPartitions) * vertexMultiplier);
var indices = IndexDatatype.createTypedArray(vertexCount, numIndices);
var i;
var j;
var theta;
var phi;
var index = 0;
// Calculate sin/cos phi
var sinPhi = new Array(stackPartitions);
var cosPhi = new Array(stackPartitions);
for (i = 0; i < stackPartitions; i++) {
phi =
minimumCone + (i * (maximumCone - minimumCone)) / (stackPartitions - 1);
sinPhi[i] = sin(phi);
cosPhi[i] = cos(phi);
}
// Calculate sin/cos theta
var sinTheta = new Array(subdivisions);
var cosTheta = new Array(subdivisions);
for (i = 0; i < subdivisions; i++) {
theta =
minimumClock + (i * (maximumClock - minimumClock)) / (subdivisions - 1);
sinTheta[i] = sin(theta);
cosTheta[i] = cos(theta);
}
// Calculate the latitude lines on the outer surface
for (i = 0; i < stackPartitions; i++) {
for (j = 0; j < subdivisions; j++) {
positions[index++] = radii.x * sinPhi[i] * cosTheta[j];
positions[index++] = radii.y * sinPhi[i] * sinTheta[j];
positions[index++] = radii.z * cosPhi[i];
}
}
// Calculate the latitude lines on the inner surface
if (hasInnerSurface) {
for (i = 0; i < stackPartitions; i++) {
for (j = 0; j < subdivisions; j++) {
positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];
positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];
positions[index++] = innerRadii.z * cosPhi[i];
}
}
}
// Calculate sin/cos phi
sinPhi.length = subdivisions;
cosPhi.length = subdivisions;
for (i = 0; i < subdivisions; i++) {
phi = minimumCone + (i * (maximumCone - minimumCone)) / (subdivisions - 1);
sinPhi[i] = sin(phi);
cosPhi[i] = cos(phi);
}
// Calculate sin/cos theta for each slice partition
sinTheta.length = slicePartitions;
cosTheta.length = slicePartitions;
for (i = 0; i < slicePartitions; i++) {
theta =
minimumClock +
(i * (maximumClock - minimumClock)) / (slicePartitions - 1);
sinTheta[i] = sin(theta);
cosTheta[i] = cos(theta);
}
// Calculate the longitude lines on the outer surface
for (i = 0; i < subdivisions; i++) {
for (j = 0; j < slicePartitions; j++) {
positions[index++] = radii.x * sinPhi[i] * cosTheta[j];
positions[index++] = radii.y * sinPhi[i] * sinTheta[j];
positions[index++] = radii.z * cosPhi[i];
}
}
// Calculate the longitude lines on the inner surface
if (hasInnerSurface) {
for (i = 0; i < subdivisions; i++) {
for (j = 0; j < slicePartitions; j++) {
positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];
positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];
positions[index++] = innerRadii.z * cosPhi[i];
}
}
}
// Create indices for the latitude lines
index = 0;
for (i = 0; i < stackPartitions * vertexMultiplier; i++) {
var topOffset = i * subdivisions;
for (j = 0; j < subdivisions - 1; j++) {
indices[index++] = topOffset + j;
indices[index++] = topOffset + j + 1;
}
}
// Create indices for the outer longitude lines
var offset = stackPartitions * subdivisions * vertexMultiplier;
for (i = 0; i < slicePartitions; i++) {
for (j = 0; j < subdivisions - 1; j++) {
indices[index++] = offset + i + j * slicePartitions;
indices[index++] = offset + i + (j + 1) * slicePartitions;
}
}
// Create indices for the inner longitude lines
if (hasInnerSurface) {
offset =
stackPartitions * subdivisions * vertexMultiplier +
slicePartitions * subdivisions;
for (i = 0; i < slicePartitions; i++) {
for (j = 0; j < subdivisions - 1; j++) {
indices[index++] = offset + i + j * slicePartitions;
indices[index++] = offset + i + (j + 1) * slicePartitions;
}
}
}
if (hasInnerSurface) {
var outerOffset = stackPartitions * subdivisions * vertexMultiplier;
var innerOffset = outerOffset + subdivisions * slicePartitions;
if (isTopOpen) {
// Draw lines from the top of the inner surface to the top of the outer surface
for (i = 0; i < slicePartitions; i++) {
indices[index++] = outerOffset + i;
indices[index++] = innerOffset + i;
}
}
if (isBotOpen) {
// Draw lines from the top of the inner surface to the top of the outer surface
outerOffset += subdivisions * slicePartitions - slicePartitions;
innerOffset += subdivisions * slicePartitions - slicePartitions;
for (i = 0; i < slicePartitions; i++) {
indices[index++] = outerOffset + i;
indices[index++] = innerOffset + i;
}
}
}
var attributes = new GeometryAttributes({
position: new GeometryAttribute({
componentDatatype: ComponentDatatype.DOUBLE,
componentsPerAttribute: 3,
values: positions,
}),
});
if (defined(ellipsoidGeometry._offsetAttribute)) {
var length = positions.length;
var applyOffset = new Uint8Array(length / 3);
var offsetValue =
ellipsoidGeometry._offsetAttribute === GeometryOffsetAttribute.NONE
? 0
: 1;
arrayFill(applyOffset, offsetValue);
attributes.applyOffset = new GeometryAttribute({
componentDatatype: ComponentDatatype.UNSIGNED_BYTE,
componentsPerAttribute: 1,
values: applyOffset,
});
}
return new Geometry({
attributes: attributes,
indices: indices,
primitiveType: PrimitiveType.LINES,
boundingSphere: BoundingSphere.fromEllipsoid(ellipsoid),
offsetAttribute: ellipsoidGeometry._offsetAttribute,
});
};
export default EllipsoidOutlineGeometry;