You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
133 lines
5.3 KiB
GLSL
133 lines
5.3 KiB
GLSL
/*!
|
|
* Atmosphere code:
|
|
*
|
|
* Copyright (c) 2000-2005, Sean O'Neil (s_p_oneil@hotmail.com)
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* * Neither the name of the project nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Modifications made by Analytical Graphics, Inc.
|
|
*/
|
|
|
|
// Atmosphere:
|
|
// Code: http://sponeil.net/
|
|
// GPU Gems 2 Article: https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter16.html
|
|
|
|
const float Kr = 0.0025;
|
|
const float Km = 0.0015;
|
|
const float ESun = 15.0;
|
|
|
|
const float fKrESun = Kr * ESun;
|
|
const float fKmESun = Km * ESun;
|
|
const float fKr4PI = Kr * 4.0 * czm_pi;
|
|
const float fKm4PI = Km * 4.0 * czm_pi;
|
|
|
|
// Original: vec3(1.0 / pow(0.650, 4.0), 1.0 / pow(0.570, 4.0), 1.0 / pow(0.475, 4.0));
|
|
const vec3 v3InvWavelength = vec3(5.60204474633241, 9.473284437923038, 19.64380261047721);
|
|
|
|
const float fScaleDepth = 0.25;
|
|
|
|
struct AtmosphereColor
|
|
{
|
|
vec3 mie;
|
|
vec3 rayleigh;
|
|
};
|
|
|
|
const int nSamples = 2;
|
|
const float fSamples = 2.0;
|
|
|
|
float scale(float fCos)
|
|
{
|
|
float x = 1.0 - fCos;
|
|
return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));
|
|
}
|
|
|
|
AtmosphereColor computeGroundAtmosphereFromSpace(vec3 v3Pos, bool dynamicLighting, vec3 lightDirectionWC)
|
|
{
|
|
float fInnerRadius = czm_ellipsoidRadii.x;
|
|
float fOuterRadius = czm_ellipsoidRadii.x * 1.025;
|
|
float fOuterRadius2 = fOuterRadius * fOuterRadius;
|
|
|
|
float fScale = 1.0 / (fOuterRadius - fInnerRadius);
|
|
float fScaleOverScaleDepth = fScale / fScaleDepth;
|
|
|
|
// Get the ray from the camera to the vertex and its length (which is the far point of the ray passing through the atmosphere)
|
|
vec3 v3Ray = v3Pos - czm_viewerPositionWC;
|
|
float fFar = length(v3Ray);
|
|
v3Ray /= fFar;
|
|
|
|
float fCameraHeight = length(czm_viewerPositionWC);
|
|
float fCameraHeight2 = fCameraHeight * fCameraHeight;
|
|
|
|
// This next line is an ANGLE workaround. It is equivalent to B = 2.0 * dot(czm_viewerPositionWC, v3Ray),
|
|
// which is what it should be, but there are problems at the poles.
|
|
float B = 2.0 * length(czm_viewerPositionWC) * dot(normalize(czm_viewerPositionWC), v3Ray);
|
|
float C = fCameraHeight2 - fOuterRadius2;
|
|
float fDet = max(0.0, B*B - 4.0 * C);
|
|
float fNear = 0.5 * (-B - sqrt(fDet));
|
|
|
|
// Calculate the ray's starting position, then calculate its scattering offset
|
|
vec3 v3Start = czm_viewerPositionWC + v3Ray * fNear;
|
|
fFar -= fNear;
|
|
float fDepth = exp((fInnerRadius - fOuterRadius) / fScaleDepth);
|
|
|
|
// The light angle based on the scene's light source would be:
|
|
// dot(lightDirectionWC, v3Pos) / length(v3Pos);
|
|
// When we want the atmosphere to be uniform over the globe so it is set to 1.0.
|
|
|
|
float fLightAngle = czm_branchFreeTernary(dynamicLighting, dot(lightDirectionWC, v3Pos) / length(v3Pos), 1.0);
|
|
float fCameraAngle = dot(-v3Ray, v3Pos) / length(v3Pos);
|
|
float fCameraScale = scale(fCameraAngle);
|
|
float fLightScale = scale(fLightAngle);
|
|
float fCameraOffset = fDepth*fCameraScale;
|
|
float fTemp = (fLightScale + fCameraScale);
|
|
|
|
// Initialize the scattering loop variables
|
|
float fSampleLength = fFar / fSamples;
|
|
float fScaledLength = fSampleLength * fScale;
|
|
vec3 v3SampleRay = v3Ray * fSampleLength;
|
|
vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5;
|
|
|
|
// Now loop through the sample rays
|
|
vec3 v3FrontColor = vec3(0.0);
|
|
vec3 v3Attenuate = vec3(0.0);
|
|
for(int i=0; i<nSamples; i++)
|
|
{
|
|
float fHeight = length(v3SamplePoint);
|
|
float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight));
|
|
float fScatter = fDepth*fTemp - fCameraOffset;
|
|
v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI));
|
|
v3FrontColor += v3Attenuate * (fDepth * fScaledLength);
|
|
v3SamplePoint += v3SampleRay;
|
|
}
|
|
|
|
AtmosphereColor color;
|
|
color.mie = v3FrontColor * (v3InvWavelength * fKrESun + fKmESun);
|
|
color.rayleigh = v3Attenuate; // Calculate the attenuation factor for the ground
|
|
|
|
return color;
|
|
}
|
|
|