You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

133 lines
5.3 KiB
GLSL

/*!
* Atmosphere code:
*
* Copyright (c) 2000-2005, Sean O'Neil (s_p_oneil@hotmail.com)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the project nor the names of its contributors may be
* used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Modifications made by Analytical Graphics, Inc.
*/
// Atmosphere:
// Code: http://sponeil.net/
// GPU Gems 2 Article: https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter16.html
const float Kr = 0.0025;
const float Km = 0.0015;
const float ESun = 15.0;
const float fKrESun = Kr * ESun;
const float fKmESun = Km * ESun;
const float fKr4PI = Kr * 4.0 * czm_pi;
const float fKm4PI = Km * 4.0 * czm_pi;
// Original: vec3(1.0 / pow(0.650, 4.0), 1.0 / pow(0.570, 4.0), 1.0 / pow(0.475, 4.0));
const vec3 v3InvWavelength = vec3(5.60204474633241, 9.473284437923038, 19.64380261047721);
const float fScaleDepth = 0.25;
struct AtmosphereColor
{
vec3 mie;
vec3 rayleigh;
};
const int nSamples = 2;
const float fSamples = 2.0;
float scale(float fCos)
{
float x = 1.0 - fCos;
return fScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));
}
AtmosphereColor computeGroundAtmosphereFromSpace(vec3 v3Pos, bool dynamicLighting, vec3 lightDirectionWC)
{
float fInnerRadius = czm_ellipsoidRadii.x;
float fOuterRadius = czm_ellipsoidRadii.x * 1.025;
float fOuterRadius2 = fOuterRadius * fOuterRadius;
float fScale = 1.0 / (fOuterRadius - fInnerRadius);
float fScaleOverScaleDepth = fScale / fScaleDepth;
// Get the ray from the camera to the vertex and its length (which is the far point of the ray passing through the atmosphere)
vec3 v3Ray = v3Pos - czm_viewerPositionWC;
float fFar = length(v3Ray);
v3Ray /= fFar;
float fCameraHeight = length(czm_viewerPositionWC);
float fCameraHeight2 = fCameraHeight * fCameraHeight;
// This next line is an ANGLE workaround. It is equivalent to B = 2.0 * dot(czm_viewerPositionWC, v3Ray),
// which is what it should be, but there are problems at the poles.
float B = 2.0 * length(czm_viewerPositionWC) * dot(normalize(czm_viewerPositionWC), v3Ray);
float C = fCameraHeight2 - fOuterRadius2;
float fDet = max(0.0, B*B - 4.0 * C);
float fNear = 0.5 * (-B - sqrt(fDet));
// Calculate the ray's starting position, then calculate its scattering offset
vec3 v3Start = czm_viewerPositionWC + v3Ray * fNear;
fFar -= fNear;
float fDepth = exp((fInnerRadius - fOuterRadius) / fScaleDepth);
// The light angle based on the scene's light source would be:
// dot(lightDirectionWC, v3Pos) / length(v3Pos);
// When we want the atmosphere to be uniform over the globe so it is set to 1.0.
float fLightAngle = czm_branchFreeTernary(dynamicLighting, dot(lightDirectionWC, v3Pos) / length(v3Pos), 1.0);
float fCameraAngle = dot(-v3Ray, v3Pos) / length(v3Pos);
float fCameraScale = scale(fCameraAngle);
float fLightScale = scale(fLightAngle);
float fCameraOffset = fDepth*fCameraScale;
float fTemp = (fLightScale + fCameraScale);
// Initialize the scattering loop variables
float fSampleLength = fFar / fSamples;
float fScaledLength = fSampleLength * fScale;
vec3 v3SampleRay = v3Ray * fSampleLength;
vec3 v3SamplePoint = v3Start + v3SampleRay * 0.5;
// Now loop through the sample rays
vec3 v3FrontColor = vec3(0.0);
vec3 v3Attenuate = vec3(0.0);
for(int i=0; i<nSamples; i++)
{
float fHeight = length(v3SamplePoint);
float fDepth = exp(fScaleOverScaleDepth * (fInnerRadius - fHeight));
float fScatter = fDepth*fTemp - fCameraOffset;
v3Attenuate = exp(-fScatter * (v3InvWavelength * fKr4PI + fKm4PI));
v3FrontColor += v3Attenuate * (fDepth * fScaledLength);
v3SamplePoint += v3SampleRay;
}
AtmosphereColor color;
color.mie = v3FrontColor * (v3InvWavelength * fKrESun + fKmESun);
color.rayleigh = v3Attenuate; // Calculate the attenuation factor for the ground
return color;
}