You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1313 lines
41 KiB
JavaScript
1313 lines
41 KiB
JavaScript
/* This file is automatically rebuilt by the Cesium build process. */
|
|
define(['exports', './Check-285f6bfc', './when-f31b6bd1'], function (exports, Check, when) { 'use strict';
|
|
|
|
/*
|
|
I've wrapped Makoto Matsumoto and Takuji Nishimura's code in a namespace
|
|
so it's better encapsulated. Now you can have multiple random number generators
|
|
and they won't stomp all over eachother's state.
|
|
|
|
If you want to use this as a substitute for Math.random(), use the random()
|
|
method like so:
|
|
|
|
var m = new MersenneTwister();
|
|
var randomNumber = m.random();
|
|
|
|
You can also call the other genrand_{foo}() methods on the instance.
|
|
|
|
If you want to use a specific seed in order to get a repeatable random
|
|
sequence, pass an integer into the constructor:
|
|
|
|
var m = new MersenneTwister(123);
|
|
|
|
and that will always produce the same random sequence.
|
|
|
|
Sean McCullough (banksean@gmail.com)
|
|
*/
|
|
|
|
/*
|
|
A C-program for MT19937, with initialization improved 2002/1/26.
|
|
Coded by Takuji Nishimura and Makoto Matsumoto.
|
|
|
|
Before using, initialize the state by using init_genrand(seed)
|
|
or init_by_array(init_key, key_length).
|
|
*/
|
|
/**
|
|
@license
|
|
mersenne-twister.js - https://gist.github.com/banksean/300494
|
|
|
|
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. The names of its contributors may not be used to endorse or promote
|
|
products derived from this software without specific prior written
|
|
permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
/*
|
|
Any feedback is very welcome.
|
|
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
|
|
email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
|
|
*/
|
|
|
|
function MersenneTwister(seed) {
|
|
if (seed == undefined) {
|
|
seed = new Date().getTime();
|
|
}
|
|
/* Period parameters */
|
|
this.N = 624;
|
|
this.M = 397;
|
|
this.MATRIX_A = 0x9908b0df; /* constant vector a */
|
|
this.UPPER_MASK = 0x80000000; /* most significant w-r bits */
|
|
this.LOWER_MASK = 0x7fffffff; /* least significant r bits */
|
|
|
|
this.mt = new Array(this.N); /* the array for the state vector */
|
|
this.mti=this.N+1; /* mti==N+1 means mt[N] is not initialized */
|
|
|
|
this.init_genrand(seed);
|
|
}
|
|
|
|
/* initializes mt[N] with a seed */
|
|
MersenneTwister.prototype.init_genrand = function(s) {
|
|
this.mt[0] = s >>> 0;
|
|
for (this.mti=1; this.mti<this.N; this.mti++) {
|
|
var s = this.mt[this.mti-1] ^ (this.mt[this.mti-1] >>> 30);
|
|
this.mt[this.mti] = (((((s & 0xffff0000) >>> 16) * 1812433253) << 16) + (s & 0x0000ffff) * 1812433253)
|
|
+ this.mti;
|
|
/* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
|
|
/* In the previous versions, MSBs of the seed affect */
|
|
/* only MSBs of the array mt[]. */
|
|
/* 2002/01/09 modified by Makoto Matsumoto */
|
|
this.mt[this.mti] >>>= 0;
|
|
/* for >32 bit machines */
|
|
}
|
|
};
|
|
|
|
/* initialize by an array with array-length */
|
|
/* init_key is the array for initializing keys */
|
|
/* key_length is its length */
|
|
/* slight change for C++, 2004/2/26 */
|
|
//MersenneTwister.prototype.init_by_array = function(init_key, key_length) {
|
|
// var i, j, k;
|
|
// this.init_genrand(19650218);
|
|
// i=1; j=0;
|
|
// k = (this.N>key_length ? this.N : key_length);
|
|
// for (; k; k--) {
|
|
// var s = this.mt[i-1] ^ (this.mt[i-1] >>> 30)
|
|
// this.mt[i] = (this.mt[i] ^ (((((s & 0xffff0000) >>> 16) * 1664525) << 16) + ((s & 0x0000ffff) * 1664525)))
|
|
// + init_key[j] + j; /* non linear */
|
|
// this.mt[i] >>>= 0; /* for WORDSIZE > 32 machines */
|
|
// i++; j++;
|
|
// if (i>=this.N) { this.mt[0] = this.mt[this.N-1]; i=1; }
|
|
// if (j>=key_length) j=0;
|
|
// }
|
|
// for (k=this.N-1; k; k--) {
|
|
// var s = this.mt[i-1] ^ (this.mt[i-1] >>> 30);
|
|
// this.mt[i] = (this.mt[i] ^ (((((s & 0xffff0000) >>> 16) * 1566083941) << 16) + (s & 0x0000ffff) * 1566083941))
|
|
// - i; /* non linear */
|
|
// this.mt[i] >>>= 0; /* for WORDSIZE > 32 machines */
|
|
// i++;
|
|
// if (i>=this.N) { this.mt[0] = this.mt[this.N-1]; i=1; }
|
|
// }
|
|
//
|
|
// this.mt[0] = 0x80000000; /* MSB is 1; assuring non-zero initial array */
|
|
//}
|
|
|
|
/* generates a random number on [0,0xffffffff]-interval */
|
|
MersenneTwister.prototype.genrand_int32 = function() {
|
|
var y;
|
|
var mag01 = new Array(0x0, this.MATRIX_A);
|
|
/* mag01[x] = x * MATRIX_A for x=0,1 */
|
|
|
|
if (this.mti >= this.N) { /* generate N words at one time */
|
|
var kk;
|
|
|
|
if (this.mti == this.N+1) /* if init_genrand() has not been called, */
|
|
this.init_genrand(5489); /* a default initial seed is used */
|
|
|
|
for (kk=0;kk<this.N-this.M;kk++) {
|
|
y = (this.mt[kk]&this.UPPER_MASK)|(this.mt[kk+1]&this.LOWER_MASK);
|
|
this.mt[kk] = this.mt[kk+this.M] ^ (y >>> 1) ^ mag01[y & 0x1];
|
|
}
|
|
for (;kk<this.N-1;kk++) {
|
|
y = (this.mt[kk]&this.UPPER_MASK)|(this.mt[kk+1]&this.LOWER_MASK);
|
|
this.mt[kk] = this.mt[kk+(this.M-this.N)] ^ (y >>> 1) ^ mag01[y & 0x1];
|
|
}
|
|
y = (this.mt[this.N-1]&this.UPPER_MASK)|(this.mt[0]&this.LOWER_MASK);
|
|
this.mt[this.N-1] = this.mt[this.M-1] ^ (y >>> 1) ^ mag01[y & 0x1];
|
|
|
|
this.mti = 0;
|
|
}
|
|
|
|
y = this.mt[this.mti++];
|
|
|
|
/* Tempering */
|
|
y ^= (y >>> 11);
|
|
y ^= (y << 7) & 0x9d2c5680;
|
|
y ^= (y << 15) & 0xefc60000;
|
|
y ^= (y >>> 18);
|
|
|
|
return y >>> 0;
|
|
};
|
|
|
|
/* generates a random number on [0,0x7fffffff]-interval */
|
|
//MersenneTwister.prototype.genrand_int31 = function() {
|
|
// return (this.genrand_int32()>>>1);
|
|
//}
|
|
|
|
/* generates a random number on [0,1]-real-interval */
|
|
//MersenneTwister.prototype.genrand_real1 = function() {
|
|
// return this.genrand_int32()*(1.0/4294967295.0);
|
|
// /* divided by 2^32-1 */
|
|
//}
|
|
|
|
/* generates a random number on [0,1)-real-interval */
|
|
MersenneTwister.prototype.random = function() {
|
|
return this.genrand_int32()*(1.0/4294967296.0);
|
|
/* divided by 2^32 */
|
|
};
|
|
|
|
/**
|
|
* Math functions.
|
|
*
|
|
* @exports CesiumMath
|
|
* @alias Math
|
|
*/
|
|
var CesiumMath = {};
|
|
|
|
/**
|
|
* 0.1
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.EPSILON1 = 0.1;
|
|
|
|
/**
|
|
* 0.01
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.EPSILON2 = 0.01;
|
|
|
|
/**
|
|
* 0.001
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.EPSILON3 = 0.001;
|
|
|
|
/**
|
|
* 0.0001
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.EPSILON4 = 0.0001;
|
|
|
|
/**
|
|
* 0.00001
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.EPSILON5 = 0.00001;
|
|
|
|
/**
|
|
* 0.000001
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.EPSILON6 = 0.000001;
|
|
|
|
/**
|
|
* 0.0000001
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.EPSILON7 = 0.0000001;
|
|
|
|
/**
|
|
* 0.00000001
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.EPSILON8 = 0.00000001;
|
|
|
|
/**
|
|
* 0.000000001
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.EPSILON9 = 0.000000001;
|
|
|
|
/**
|
|
* 0.0000000001
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.EPSILON10 = 0.0000000001;
|
|
|
|
/**
|
|
* 0.00000000001
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.EPSILON11 = 0.00000000001;
|
|
|
|
/**
|
|
* 0.000000000001
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.EPSILON12 = 0.000000000001;
|
|
|
|
/**
|
|
* 0.0000000000001
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.EPSILON13 = 0.0000000000001;
|
|
|
|
/**
|
|
* 0.00000000000001
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.EPSILON14 = 0.00000000000001;
|
|
|
|
/**
|
|
* 0.000000000000001
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.EPSILON15 = 0.000000000000001;
|
|
|
|
/**
|
|
* 0.0000000000000001
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.EPSILON16 = 0.0000000000000001;
|
|
|
|
/**
|
|
* 0.00000000000000001
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.EPSILON17 = 0.00000000000000001;
|
|
|
|
/**
|
|
* 0.000000000000000001
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.EPSILON18 = 0.000000000000000001;
|
|
|
|
/**
|
|
* 0.0000000000000000001
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.EPSILON19 = 0.0000000000000000001;
|
|
|
|
/**
|
|
* 0.00000000000000000001
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.EPSILON20 = 0.00000000000000000001;
|
|
|
|
/**
|
|
* 0.000000000000000000001
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.EPSILON21 = 0.000000000000000000001;
|
|
|
|
/**
|
|
* The gravitational parameter of the Earth in meters cubed
|
|
* per second squared as defined by the WGS84 model: 3.986004418e14
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.GRAVITATIONALPARAMETER = 3.986004418e14;
|
|
|
|
/**
|
|
* Radius of the sun in meters: 6.955e8
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.SOLAR_RADIUS = 6.955e8;
|
|
|
|
/**
|
|
* The mean radius of the moon, according to the "Report of the IAU/IAG Working Group on
|
|
* Cartographic Coordinates and Rotational Elements of the Planets and satellites: 2000",
|
|
* Celestial Mechanics 82: 83-110, 2002.
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.LUNAR_RADIUS = 1737400.0;
|
|
|
|
/**
|
|
* 64 * 1024
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.SIXTY_FOUR_KILOBYTES = 64 * 1024;
|
|
|
|
/**
|
|
* 4 * 1024 * 1024 * 1024
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.FOUR_GIGABYTES = 4 * 1024 * 1024 * 1024;
|
|
|
|
/**
|
|
* Returns the sign of the value; 1 if the value is positive, -1 if the value is
|
|
* negative, or 0 if the value is 0.
|
|
*
|
|
* @function
|
|
* @param {Number} value The value to return the sign of.
|
|
* @returns {Number} The sign of value.
|
|
*/
|
|
// eslint-disable-next-line es/no-math-sign
|
|
CesiumMath.sign = when.defaultValue(Math.sign, function sign(value) {
|
|
value = +value; // coerce to number
|
|
if (value === 0 || value !== value) {
|
|
// zero or NaN
|
|
return value;
|
|
}
|
|
return value > 0 ? 1 : -1;
|
|
});
|
|
|
|
/**
|
|
* Returns 1.0 if the given value is positive or zero, and -1.0 if it is negative.
|
|
* This is similar to {@link CesiumMath#sign} except that returns 1.0 instead of
|
|
* 0.0 when the input value is 0.0.
|
|
* @param {Number} value The value to return the sign of.
|
|
* @returns {Number} The sign of value.
|
|
*/
|
|
CesiumMath.signNotZero = function (value) {
|
|
return value < 0.0 ? -1.0 : 1.0;
|
|
};
|
|
|
|
/**
|
|
* Converts a scalar value in the range [-1.0, 1.0] to a SNORM in the range [0, rangeMaximum]
|
|
* @param {Number} value The scalar value in the range [-1.0, 1.0]
|
|
* @param {Number} [rangeMaximum=255] The maximum value in the mapped range, 255 by default.
|
|
* @returns {Number} A SNORM value, where 0 maps to -1.0 and rangeMaximum maps to 1.0.
|
|
*
|
|
* @see CesiumMath.fromSNorm
|
|
*/
|
|
CesiumMath.toSNorm = function (value, rangeMaximum) {
|
|
rangeMaximum = when.defaultValue(rangeMaximum, 255);
|
|
return Math.round(
|
|
(CesiumMath.clamp(value, -1.0, 1.0) * 0.5 + 0.5) * rangeMaximum
|
|
);
|
|
};
|
|
|
|
/**
|
|
* Converts a SNORM value in the range [0, rangeMaximum] to a scalar in the range [-1.0, 1.0].
|
|
* @param {Number} value SNORM value in the range [0, rangeMaximum]
|
|
* @param {Number} [rangeMaximum=255] The maximum value in the SNORM range, 255 by default.
|
|
* @returns {Number} Scalar in the range [-1.0, 1.0].
|
|
*
|
|
* @see CesiumMath.toSNorm
|
|
*/
|
|
CesiumMath.fromSNorm = function (value, rangeMaximum) {
|
|
rangeMaximum = when.defaultValue(rangeMaximum, 255);
|
|
return (
|
|
(CesiumMath.clamp(value, 0.0, rangeMaximum) / rangeMaximum) * 2.0 - 1.0
|
|
);
|
|
};
|
|
|
|
/**
|
|
* Converts a scalar value in the range [rangeMinimum, rangeMaximum] to a scalar in the range [0.0, 1.0]
|
|
* @param {Number} value The scalar value in the range [rangeMinimum, rangeMaximum]
|
|
* @param {Number} rangeMinimum The minimum value in the mapped range.
|
|
* @param {Number} rangeMaximum The maximum value in the mapped range.
|
|
* @returns {Number} A scalar value, where rangeMinimum maps to 0.0 and rangeMaximum maps to 1.0.
|
|
*/
|
|
CesiumMath.normalize = function (value, rangeMinimum, rangeMaximum) {
|
|
rangeMaximum = Math.max(rangeMaximum - rangeMinimum, 0.0);
|
|
return rangeMaximum === 0.0
|
|
? 0.0
|
|
: CesiumMath.clamp((value - rangeMinimum) / rangeMaximum, 0.0, 1.0);
|
|
};
|
|
|
|
/**
|
|
* Returns the hyperbolic sine of a number.
|
|
* The hyperbolic sine of <em>value</em> is defined to be
|
|
* (<em>e<sup>x</sup> - e<sup>-x</sup></em>)/2.0
|
|
* where <i>e</i> is Euler's number, approximately 2.71828183.
|
|
*
|
|
* <p>Special cases:
|
|
* <ul>
|
|
* <li>If the argument is NaN, then the result is NaN.</li>
|
|
*
|
|
* <li>If the argument is infinite, then the result is an infinity
|
|
* with the same sign as the argument.</li>
|
|
*
|
|
* <li>If the argument is zero, then the result is a zero with the
|
|
* same sign as the argument.</li>
|
|
* </ul>
|
|
*</p>
|
|
*
|
|
* @function
|
|
* @param {Number} value The number whose hyperbolic sine is to be returned.
|
|
* @returns {Number} The hyperbolic sine of <code>value</code>.
|
|
*/
|
|
// eslint-disable-next-line es/no-math-sinh
|
|
CesiumMath.sinh = when.defaultValue(Math.sinh, function sinh(value) {
|
|
return (Math.exp(value) - Math.exp(-value)) / 2.0;
|
|
});
|
|
|
|
/**
|
|
* Returns the hyperbolic cosine of a number.
|
|
* The hyperbolic cosine of <strong>value</strong> is defined to be
|
|
* (<em>e<sup>x</sup> + e<sup>-x</sup></em>)/2.0
|
|
* where <i>e</i> is Euler's number, approximately 2.71828183.
|
|
*
|
|
* <p>Special cases:
|
|
* <ul>
|
|
* <li>If the argument is NaN, then the result is NaN.</li>
|
|
*
|
|
* <li>If the argument is infinite, then the result is positive infinity.</li>
|
|
*
|
|
* <li>If the argument is zero, then the result is 1.0.</li>
|
|
* </ul>
|
|
*</p>
|
|
*
|
|
* @function
|
|
* @param {Number} value The number whose hyperbolic cosine is to be returned.
|
|
* @returns {Number} The hyperbolic cosine of <code>value</code>.
|
|
*/
|
|
// eslint-disable-next-line es/no-math-cosh
|
|
CesiumMath.cosh = when.defaultValue(Math.cosh, function cosh(value) {
|
|
return (Math.exp(value) + Math.exp(-value)) / 2.0;
|
|
});
|
|
|
|
/**
|
|
* Computes the linear interpolation of two values.
|
|
*
|
|
* @param {Number} p The start value to interpolate.
|
|
* @param {Number} q The end value to interpolate.
|
|
* @param {Number} time The time of interpolation generally in the range <code>[0.0, 1.0]</code>.
|
|
* @returns {Number} The linearly interpolated value.
|
|
*
|
|
* @example
|
|
* var n = Cesium.Math.lerp(0.0, 2.0, 0.5); // returns 1.0
|
|
*/
|
|
CesiumMath.lerp = function (p, q, time) {
|
|
return (1.0 - time) * p + time * q;
|
|
};
|
|
|
|
/**
|
|
* pi
|
|
*
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.PI = Math.PI;
|
|
|
|
/**
|
|
* 1/pi
|
|
*
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.ONE_OVER_PI = 1.0 / Math.PI;
|
|
|
|
/**
|
|
* pi/2
|
|
*
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.PI_OVER_TWO = Math.PI / 2.0;
|
|
|
|
/**
|
|
* pi/3
|
|
*
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.PI_OVER_THREE = Math.PI / 3.0;
|
|
|
|
/**
|
|
* pi/4
|
|
*
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.PI_OVER_FOUR = Math.PI / 4.0;
|
|
|
|
/**
|
|
* pi/6
|
|
*
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.PI_OVER_SIX = Math.PI / 6.0;
|
|
|
|
/**
|
|
* 3pi/2
|
|
*
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.THREE_PI_OVER_TWO = (3.0 * Math.PI) / 2.0;
|
|
|
|
/**
|
|
* 2pi
|
|
*
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.TWO_PI = 2.0 * Math.PI;
|
|
|
|
/**
|
|
* 1/2pi
|
|
*
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.ONE_OVER_TWO_PI = 1.0 / (2.0 * Math.PI);
|
|
|
|
/**
|
|
* The number of radians in a degree.
|
|
*
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.RADIANS_PER_DEGREE = Math.PI / 180.0;
|
|
|
|
/**
|
|
* The number of degrees in a radian.
|
|
*
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.DEGREES_PER_RADIAN = 180.0 / Math.PI;
|
|
|
|
/**
|
|
* The number of radians in an arc second.
|
|
*
|
|
* @type {Number}
|
|
* @constant
|
|
*/
|
|
CesiumMath.RADIANS_PER_ARCSECOND = CesiumMath.RADIANS_PER_DEGREE / 3600.0;
|
|
|
|
/**
|
|
* Converts degrees to radians.
|
|
* @param {Number} degrees The angle to convert in degrees.
|
|
* @returns {Number} The corresponding angle in radians.
|
|
*/
|
|
CesiumMath.toRadians = function (degrees) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(degrees)) {
|
|
throw new Check.DeveloperError("degrees is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
return degrees * CesiumMath.RADIANS_PER_DEGREE;
|
|
};
|
|
|
|
/**
|
|
* Converts radians to degrees.
|
|
* @param {Number} radians The angle to convert in radians.
|
|
* @returns {Number} The corresponding angle in degrees.
|
|
*/
|
|
CesiumMath.toDegrees = function (radians) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(radians)) {
|
|
throw new Check.DeveloperError("radians is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
return radians * CesiumMath.DEGREES_PER_RADIAN;
|
|
};
|
|
|
|
/**
|
|
* Converts a longitude value, in radians, to the range [<code>-Math.PI</code>, <code>Math.PI</code>).
|
|
*
|
|
* @param {Number} angle The longitude value, in radians, to convert to the range [<code>-Math.PI</code>, <code>Math.PI</code>).
|
|
* @returns {Number} The equivalent longitude value in the range [<code>-Math.PI</code>, <code>Math.PI</code>).
|
|
*
|
|
* @example
|
|
* // Convert 270 degrees to -90 degrees longitude
|
|
* var longitude = Cesium.Math.convertLongitudeRange(Cesium.Math.toRadians(270.0));
|
|
*/
|
|
CesiumMath.convertLongitudeRange = function (angle) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(angle)) {
|
|
throw new Check.DeveloperError("angle is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
var twoPi = CesiumMath.TWO_PI;
|
|
|
|
var simplified = angle - Math.floor(angle / twoPi) * twoPi;
|
|
|
|
if (simplified < -Math.PI) {
|
|
return simplified + twoPi;
|
|
}
|
|
if (simplified >= Math.PI) {
|
|
return simplified - twoPi;
|
|
}
|
|
|
|
return simplified;
|
|
};
|
|
|
|
/**
|
|
* Convenience function that clamps a latitude value, in radians, to the range [<code>-Math.PI/2</code>, <code>Math.PI/2</code>).
|
|
* Useful for sanitizing data before use in objects requiring correct range.
|
|
*
|
|
* @param {Number} angle The latitude value, in radians, to clamp to the range [<code>-Math.PI/2</code>, <code>Math.PI/2</code>).
|
|
* @returns {Number} The latitude value clamped to the range [<code>-Math.PI/2</code>, <code>Math.PI/2</code>).
|
|
*
|
|
* @example
|
|
* // Clamp 108 degrees latitude to 90 degrees latitude
|
|
* var latitude = Cesium.Math.clampToLatitudeRange(Cesium.Math.toRadians(108.0));
|
|
*/
|
|
CesiumMath.clampToLatitudeRange = function (angle) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(angle)) {
|
|
throw new Check.DeveloperError("angle is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
return CesiumMath.clamp(
|
|
angle,
|
|
-1 * CesiumMath.PI_OVER_TWO,
|
|
CesiumMath.PI_OVER_TWO
|
|
);
|
|
};
|
|
|
|
/**
|
|
* Produces an angle in the range -Pi <= angle <= Pi which is equivalent to the provided angle.
|
|
*
|
|
* @param {Number} angle in radians
|
|
* @returns {Number} The angle in the range [<code>-CesiumMath.PI</code>, <code>CesiumMath.PI</code>].
|
|
*/
|
|
CesiumMath.negativePiToPi = function (angle) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(angle)) {
|
|
throw new Check.DeveloperError("angle is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
if (angle >= -CesiumMath.PI && angle <= CesiumMath.PI) {
|
|
// Early exit if the input is already inside the range. This avoids
|
|
// unnecessary math which could introduce floating point error.
|
|
return angle;
|
|
}
|
|
return CesiumMath.zeroToTwoPi(angle + CesiumMath.PI) - CesiumMath.PI;
|
|
};
|
|
|
|
/**
|
|
* Produces an angle in the range 0 <= angle <= 2Pi which is equivalent to the provided angle.
|
|
*
|
|
* @param {Number} angle in radians
|
|
* @returns {Number} The angle in the range [0, <code>CesiumMath.TWO_PI</code>].
|
|
*/
|
|
CesiumMath.zeroToTwoPi = function (angle) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(angle)) {
|
|
throw new Check.DeveloperError("angle is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
if (angle >= 0 && angle <= CesiumMath.TWO_PI) {
|
|
// Early exit if the input is already inside the range. This avoids
|
|
// unnecessary math which could introduce floating point error.
|
|
return angle;
|
|
}
|
|
var mod = CesiumMath.mod(angle, CesiumMath.TWO_PI);
|
|
if (
|
|
Math.abs(mod) < CesiumMath.EPSILON14 &&
|
|
Math.abs(angle) > CesiumMath.EPSILON14
|
|
) {
|
|
return CesiumMath.TWO_PI;
|
|
}
|
|
return mod;
|
|
};
|
|
|
|
/**
|
|
* The modulo operation that also works for negative dividends.
|
|
*
|
|
* @param {Number} m The dividend.
|
|
* @param {Number} n The divisor.
|
|
* @returns {Number} The remainder.
|
|
*/
|
|
CesiumMath.mod = function (m, n) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(m)) {
|
|
throw new Check.DeveloperError("m is required.");
|
|
}
|
|
if (!when.defined(n)) {
|
|
throw new Check.DeveloperError("n is required.");
|
|
}
|
|
if (n === 0.0) {
|
|
throw new Check.DeveloperError("divisor cannot be 0.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
if (CesiumMath.sign(m) === CesiumMath.sign(n) && Math.abs(m) < Math.abs(n)) {
|
|
// Early exit if the input does not need to be modded. This avoids
|
|
// unnecessary math which could introduce floating point error.
|
|
return m;
|
|
}
|
|
|
|
return ((m % n) + n) % n;
|
|
};
|
|
|
|
/**
|
|
* Determines if two values are equal using an absolute or relative tolerance test. This is useful
|
|
* to avoid problems due to roundoff error when comparing floating-point values directly. The values are
|
|
* first compared using an absolute tolerance test. If that fails, a relative tolerance test is performed.
|
|
* Use this test if you are unsure of the magnitudes of left and right.
|
|
*
|
|
* @param {Number} left The first value to compare.
|
|
* @param {Number} right The other value to compare.
|
|
* @param {Number} [relativeEpsilon=0] The maximum inclusive delta between <code>left</code> and <code>right</code> for the relative tolerance test.
|
|
* @param {Number} [absoluteEpsilon=relativeEpsilon] The maximum inclusive delta between <code>left</code> and <code>right</code> for the absolute tolerance test.
|
|
* @returns {Boolean} <code>true</code> if the values are equal within the epsilon; otherwise, <code>false</code>.
|
|
*
|
|
* @example
|
|
* var a = Cesium.Math.equalsEpsilon(0.0, 0.01, Cesium.Math.EPSILON2); // true
|
|
* var b = Cesium.Math.equalsEpsilon(0.0, 0.1, Cesium.Math.EPSILON2); // false
|
|
* var c = Cesium.Math.equalsEpsilon(3699175.1634344, 3699175.2, Cesium.Math.EPSILON7); // true
|
|
* var d = Cesium.Math.equalsEpsilon(3699175.1634344, 3699175.2, Cesium.Math.EPSILON9); // false
|
|
*/
|
|
CesiumMath.equalsEpsilon = function (
|
|
left,
|
|
right,
|
|
relativeEpsilon,
|
|
absoluteEpsilon
|
|
) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(left)) {
|
|
throw new Check.DeveloperError("left is required.");
|
|
}
|
|
if (!when.defined(right)) {
|
|
throw new Check.DeveloperError("right is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
relativeEpsilon = when.defaultValue(relativeEpsilon, 0.0);
|
|
absoluteEpsilon = when.defaultValue(absoluteEpsilon, relativeEpsilon);
|
|
var absDiff = Math.abs(left - right);
|
|
return (
|
|
absDiff <= absoluteEpsilon ||
|
|
absDiff <= relativeEpsilon * Math.max(Math.abs(left), Math.abs(right))
|
|
);
|
|
};
|
|
|
|
/**
|
|
* Determines if the left value is less than the right value. If the two values are within
|
|
* <code>absoluteEpsilon</code> of each other, they are considered equal and this function returns false.
|
|
*
|
|
* @param {Number} left The first number to compare.
|
|
* @param {Number} right The second number to compare.
|
|
* @param {Number} absoluteEpsilon The absolute epsilon to use in comparison.
|
|
* @returns {Boolean} <code>true</code> if <code>left</code> is less than <code>right</code> by more than
|
|
* <code>absoluteEpsilon<code>. <code>false</code> if <code>left</code> is greater or if the two
|
|
* values are nearly equal.
|
|
*/
|
|
CesiumMath.lessThan = function (left, right, absoluteEpsilon) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(left)) {
|
|
throw new Check.DeveloperError("first is required.");
|
|
}
|
|
if (!when.defined(right)) {
|
|
throw new Check.DeveloperError("second is required.");
|
|
}
|
|
if (!when.defined(absoluteEpsilon)) {
|
|
throw new Check.DeveloperError("absoluteEpsilon is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
return left - right < -absoluteEpsilon;
|
|
};
|
|
|
|
/**
|
|
* Determines if the left value is less than or equal to the right value. If the two values are within
|
|
* <code>absoluteEpsilon</code> of each other, they are considered equal and this function returns true.
|
|
*
|
|
* @param {Number} left The first number to compare.
|
|
* @param {Number} right The second number to compare.
|
|
* @param {Number} absoluteEpsilon The absolute epsilon to use in comparison.
|
|
* @returns {Boolean} <code>true</code> if <code>left</code> is less than <code>right</code> or if the
|
|
* the values are nearly equal.
|
|
*/
|
|
CesiumMath.lessThanOrEquals = function (left, right, absoluteEpsilon) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(left)) {
|
|
throw new Check.DeveloperError("first is required.");
|
|
}
|
|
if (!when.defined(right)) {
|
|
throw new Check.DeveloperError("second is required.");
|
|
}
|
|
if (!when.defined(absoluteEpsilon)) {
|
|
throw new Check.DeveloperError("absoluteEpsilon is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
return left - right < absoluteEpsilon;
|
|
};
|
|
|
|
/**
|
|
* Determines if the left value is greater the right value. If the two values are within
|
|
* <code>absoluteEpsilon</code> of each other, they are considered equal and this function returns false.
|
|
*
|
|
* @param {Number} left The first number to compare.
|
|
* @param {Number} right The second number to compare.
|
|
* @param {Number} absoluteEpsilon The absolute epsilon to use in comparison.
|
|
* @returns {Boolean} <code>true</code> if <code>left</code> is greater than <code>right</code> by more than
|
|
* <code>absoluteEpsilon<code>. <code>false</code> if <code>left</code> is less or if the two
|
|
* values are nearly equal.
|
|
*/
|
|
CesiumMath.greaterThan = function (left, right, absoluteEpsilon) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(left)) {
|
|
throw new Check.DeveloperError("first is required.");
|
|
}
|
|
if (!when.defined(right)) {
|
|
throw new Check.DeveloperError("second is required.");
|
|
}
|
|
if (!when.defined(absoluteEpsilon)) {
|
|
throw new Check.DeveloperError("absoluteEpsilon is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
return left - right > absoluteEpsilon;
|
|
};
|
|
|
|
/**
|
|
* Determines if the left value is greater than or equal to the right value. If the two values are within
|
|
* <code>absoluteEpsilon</code> of each other, they are considered equal and this function returns true.
|
|
*
|
|
* @param {Number} left The first number to compare.
|
|
* @param {Number} right The second number to compare.
|
|
* @param {Number} absoluteEpsilon The absolute epsilon to use in comparison.
|
|
* @returns {Boolean} <code>true</code> if <code>left</code> is greater than <code>right</code> or if the
|
|
* the values are nearly equal.
|
|
*/
|
|
CesiumMath.greaterThanOrEquals = function (left, right, absoluteEpsilon) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(left)) {
|
|
throw new Check.DeveloperError("first is required.");
|
|
}
|
|
if (!when.defined(right)) {
|
|
throw new Check.DeveloperError("second is required.");
|
|
}
|
|
if (!when.defined(absoluteEpsilon)) {
|
|
throw new Check.DeveloperError("absoluteEpsilon is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
return left - right > -absoluteEpsilon;
|
|
};
|
|
|
|
var factorials = [1];
|
|
|
|
/**
|
|
* Computes the factorial of the provided number.
|
|
*
|
|
* @param {Number} n The number whose factorial is to be computed.
|
|
* @returns {Number} The factorial of the provided number or undefined if the number is less than 0.
|
|
*
|
|
* @exception {DeveloperError} A number greater than or equal to 0 is required.
|
|
*
|
|
*
|
|
* @example
|
|
* //Compute 7!, which is equal to 5040
|
|
* var computedFactorial = Cesium.Math.factorial(7);
|
|
*
|
|
* @see {@link http://en.wikipedia.org/wiki/Factorial|Factorial on Wikipedia}
|
|
*/
|
|
CesiumMath.factorial = function (n) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (typeof n !== "number" || n < 0) {
|
|
throw new Check.DeveloperError(
|
|
"A number greater than or equal to 0 is required."
|
|
);
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
var length = factorials.length;
|
|
if (n >= length) {
|
|
var sum = factorials[length - 1];
|
|
for (var i = length; i <= n; i++) {
|
|
var next = sum * i;
|
|
factorials.push(next);
|
|
sum = next;
|
|
}
|
|
}
|
|
return factorials[n];
|
|
};
|
|
|
|
/**
|
|
* Increments a number with a wrapping to a minimum value if the number exceeds the maximum value.
|
|
*
|
|
* @param {Number} [n] The number to be incremented.
|
|
* @param {Number} [maximumValue] The maximum incremented value before rolling over to the minimum value.
|
|
* @param {Number} [minimumValue=0.0] The number reset to after the maximum value has been exceeded.
|
|
* @returns {Number} The incremented number.
|
|
*
|
|
* @exception {DeveloperError} Maximum value must be greater than minimum value.
|
|
*
|
|
* @example
|
|
* var n = Cesium.Math.incrementWrap(5, 10, 0); // returns 6
|
|
* var n = Cesium.Math.incrementWrap(10, 10, 0); // returns 0
|
|
*/
|
|
CesiumMath.incrementWrap = function (n, maximumValue, minimumValue) {
|
|
minimumValue = when.defaultValue(minimumValue, 0.0);
|
|
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(n)) {
|
|
throw new Check.DeveloperError("n is required.");
|
|
}
|
|
if (maximumValue <= minimumValue) {
|
|
throw new Check.DeveloperError("maximumValue must be greater than minimumValue.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
++n;
|
|
if (n > maximumValue) {
|
|
n = minimumValue;
|
|
}
|
|
return n;
|
|
};
|
|
|
|
/**
|
|
* Determines if a non-negative integer is a power of two.
|
|
* The maximum allowed input is (2^32)-1 due to 32-bit bitwise operator limitation in Javascript.
|
|
*
|
|
* @param {Number} n The integer to test in the range [0, (2^32)-1].
|
|
* @returns {Boolean} <code>true</code> if the number if a power of two; otherwise, <code>false</code>.
|
|
*
|
|
* @exception {DeveloperError} A number between 0 and (2^32)-1 is required.
|
|
*
|
|
* @example
|
|
* var t = Cesium.Math.isPowerOfTwo(16); // true
|
|
* var f = Cesium.Math.isPowerOfTwo(20); // false
|
|
*/
|
|
CesiumMath.isPowerOfTwo = function (n) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (typeof n !== "number" || n < 0 || n > 4294967295) {
|
|
throw new Check.DeveloperError("A number between 0 and (2^32)-1 is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
return n !== 0 && (n & (n - 1)) === 0;
|
|
};
|
|
|
|
/**
|
|
* Computes the next power-of-two integer greater than or equal to the provided non-negative integer.
|
|
* The maximum allowed input is 2^31 due to 32-bit bitwise operator limitation in Javascript.
|
|
*
|
|
* @param {Number} n The integer to test in the range [0, 2^31].
|
|
* @returns {Number} The next power-of-two integer.
|
|
*
|
|
* @exception {DeveloperError} A number between 0 and 2^31 is required.
|
|
*
|
|
* @example
|
|
* var n = Cesium.Math.nextPowerOfTwo(29); // 32
|
|
* var m = Cesium.Math.nextPowerOfTwo(32); // 32
|
|
*/
|
|
CesiumMath.nextPowerOfTwo = function (n) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (typeof n !== "number" || n < 0 || n > 2147483648) {
|
|
throw new Check.DeveloperError("A number between 0 and 2^31 is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
// From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
|
|
--n;
|
|
n |= n >> 1;
|
|
n |= n >> 2;
|
|
n |= n >> 4;
|
|
n |= n >> 8;
|
|
n |= n >> 16;
|
|
++n;
|
|
|
|
return n;
|
|
};
|
|
|
|
/**
|
|
* Computes the previous power-of-two integer less than or equal to the provided non-negative integer.
|
|
* The maximum allowed input is (2^32)-1 due to 32-bit bitwise operator limitation in Javascript.
|
|
*
|
|
* @param {Number} n The integer to test in the range [0, (2^32)-1].
|
|
* @returns {Number} The previous power-of-two integer.
|
|
*
|
|
* @exception {DeveloperError} A number between 0 and (2^32)-1 is required.
|
|
*
|
|
* @example
|
|
* var n = Cesium.Math.previousPowerOfTwo(29); // 16
|
|
* var m = Cesium.Math.previousPowerOfTwo(32); // 32
|
|
*/
|
|
CesiumMath.previousPowerOfTwo = function (n) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (typeof n !== "number" || n < 0 || n > 4294967295) {
|
|
throw new Check.DeveloperError("A number between 0 and (2^32)-1 is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
n |= n >> 1;
|
|
n |= n >> 2;
|
|
n |= n >> 4;
|
|
n |= n >> 8;
|
|
n |= n >> 16;
|
|
n |= n >> 32;
|
|
|
|
// The previous bitwise operations implicitly convert to signed 32-bit. Use `>>>` to convert to unsigned
|
|
n = (n >>> 0) - (n >>> 1);
|
|
|
|
return n;
|
|
};
|
|
|
|
/**
|
|
* Constraint a value to lie between two values.
|
|
*
|
|
* @param {Number} value The value to constrain.
|
|
* @param {Number} min The minimum value.
|
|
* @param {Number} max The maximum value.
|
|
* @returns {Number} The value clamped so that min <= value <= max.
|
|
*/
|
|
CesiumMath.clamp = function (value, min, max) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(value)) {
|
|
throw new Check.DeveloperError("value is required");
|
|
}
|
|
if (!when.defined(min)) {
|
|
throw new Check.DeveloperError("min is required.");
|
|
}
|
|
if (!when.defined(max)) {
|
|
throw new Check.DeveloperError("max is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
return value < min ? min : value > max ? max : value;
|
|
};
|
|
|
|
var randomNumberGenerator = new MersenneTwister();
|
|
|
|
/**
|
|
* Sets the seed used by the random number generator
|
|
* in {@link CesiumMath#nextRandomNumber}.
|
|
*
|
|
* @param {Number} seed An integer used as the seed.
|
|
*/
|
|
CesiumMath.setRandomNumberSeed = function (seed) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(seed)) {
|
|
throw new Check.DeveloperError("seed is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
randomNumberGenerator = new MersenneTwister(seed);
|
|
};
|
|
|
|
/**
|
|
* Generates a random floating point number in the range of [0.0, 1.0)
|
|
* using a Mersenne twister.
|
|
*
|
|
* @returns {Number} A random number in the range of [0.0, 1.0).
|
|
*
|
|
* @see CesiumMath.setRandomNumberSeed
|
|
* @see {@link http://en.wikipedia.org/wiki/Mersenne_twister|Mersenne twister on Wikipedia}
|
|
*/
|
|
CesiumMath.nextRandomNumber = function () {
|
|
return randomNumberGenerator.random();
|
|
};
|
|
|
|
/**
|
|
* Generates a random number between two numbers.
|
|
*
|
|
* @param {Number} min The minimum value.
|
|
* @param {Number} max The maximum value.
|
|
* @returns {Number} A random number between the min and max.
|
|
*/
|
|
CesiumMath.randomBetween = function (min, max) {
|
|
return CesiumMath.nextRandomNumber() * (max - min) + min;
|
|
};
|
|
|
|
/**
|
|
* Computes <code>Math.acos(value)</code>, but first clamps <code>value</code> to the range [-1.0, 1.0]
|
|
* so that the function will never return NaN.
|
|
*
|
|
* @param {Number} value The value for which to compute acos.
|
|
* @returns {Number} The acos of the value if the value is in the range [-1.0, 1.0], or the acos of -1.0 or 1.0,
|
|
* whichever is closer, if the value is outside the range.
|
|
*/
|
|
CesiumMath.acosClamped = function (value) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(value)) {
|
|
throw new Check.DeveloperError("value is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
return Math.acos(CesiumMath.clamp(value, -1.0, 1.0));
|
|
};
|
|
|
|
/**
|
|
* Computes <code>Math.asin(value)</code>, but first clamps <code>value</code> to the range [-1.0, 1.0]
|
|
* so that the function will never return NaN.
|
|
*
|
|
* @param {Number} value The value for which to compute asin.
|
|
* @returns {Number} The asin of the value if the value is in the range [-1.0, 1.0], or the asin of -1.0 or 1.0,
|
|
* whichever is closer, if the value is outside the range.
|
|
*/
|
|
CesiumMath.asinClamped = function (value) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(value)) {
|
|
throw new Check.DeveloperError("value is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
return Math.asin(CesiumMath.clamp(value, -1.0, 1.0));
|
|
};
|
|
|
|
/**
|
|
* Finds the chord length between two points given the circle's radius and the angle between the points.
|
|
*
|
|
* @param {Number} angle The angle between the two points.
|
|
* @param {Number} radius The radius of the circle.
|
|
* @returns {Number} The chord length.
|
|
*/
|
|
CesiumMath.chordLength = function (angle, radius) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(angle)) {
|
|
throw new Check.DeveloperError("angle is required.");
|
|
}
|
|
if (!when.defined(radius)) {
|
|
throw new Check.DeveloperError("radius is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
return 2.0 * radius * Math.sin(angle * 0.5);
|
|
};
|
|
|
|
/**
|
|
* Finds the logarithm of a number to a base.
|
|
*
|
|
* @param {Number} number The number.
|
|
* @param {Number} base The base.
|
|
* @returns {Number} The result.
|
|
*/
|
|
CesiumMath.logBase = function (number, base) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (!when.defined(number)) {
|
|
throw new Check.DeveloperError("number is required.");
|
|
}
|
|
if (!when.defined(base)) {
|
|
throw new Check.DeveloperError("base is required.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
return Math.log(number) / Math.log(base);
|
|
};
|
|
|
|
/**
|
|
* Finds the cube root of a number.
|
|
* Returns NaN if <code>number</code> is not provided.
|
|
*
|
|
* @function
|
|
* @param {Number} [number] The number.
|
|
* @returns {Number} The result.
|
|
*/
|
|
// eslint-disable-next-line es/no-math-cbrt
|
|
CesiumMath.cbrt = when.defaultValue(Math.cbrt, function cbrt(number) {
|
|
var result = Math.pow(Math.abs(number), 1.0 / 3.0);
|
|
return number < 0.0 ? -result : result;
|
|
});
|
|
|
|
/**
|
|
* Finds the base 2 logarithm of a number.
|
|
*
|
|
* @function
|
|
* @param {Number} number The number.
|
|
* @returns {Number} The result.
|
|
*/
|
|
// eslint-disable-next-line es/no-math-log2
|
|
CesiumMath.log2 = when.defaultValue(Math.log2, function log2(number) {
|
|
return Math.log(number) * Math.LOG2E;
|
|
});
|
|
|
|
/**
|
|
* @private
|
|
*/
|
|
CesiumMath.fog = function (distanceToCamera, density) {
|
|
var scalar = distanceToCamera * density;
|
|
return 1.0 - Math.exp(-(scalar * scalar));
|
|
};
|
|
|
|
/**
|
|
* Computes a fast approximation of Atan for input in the range [-1, 1].
|
|
*
|
|
* Based on Michal Drobot's approximation from ShaderFastLibs,
|
|
* which in turn is based on "Efficient approximations for the arctangent function,"
|
|
* Rajan, S. Sichun Wang Inkol, R. Joyal, A., May 2006.
|
|
* Adapted from ShaderFastLibs under MIT License.
|
|
*
|
|
* @param {Number} x An input number in the range [-1, 1]
|
|
* @returns {Number} An approximation of atan(x)
|
|
*/
|
|
CesiumMath.fastApproximateAtan = function (x) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.Check.typeOf.number("x", x);
|
|
//>>includeEnd('debug');
|
|
|
|
return x * (-0.1784 * Math.abs(x) - 0.0663 * x * x + 1.0301);
|
|
};
|
|
|
|
/**
|
|
* Computes a fast approximation of Atan2(x, y) for arbitrary input scalars.
|
|
*
|
|
* Range reduction math based on nvidia's cg reference implementation: http://developer.download.nvidia.com/cg/atan2.html
|
|
*
|
|
* @param {Number} x An input number that isn't zero if y is zero.
|
|
* @param {Number} y An input number that isn't zero if x is zero.
|
|
* @returns {Number} An approximation of atan2(x, y)
|
|
*/
|
|
CesiumMath.fastApproximateAtan2 = function (x, y) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.Check.typeOf.number("x", x);
|
|
Check.Check.typeOf.number("y", y);
|
|
//>>includeEnd('debug');
|
|
|
|
// atan approximations are usually only reliable over [-1, 1]
|
|
// So reduce the range by flipping whether x or y is on top based on which is bigger.
|
|
var opposite;
|
|
var adjacent;
|
|
var t = Math.abs(x); // t used as swap and atan result.
|
|
opposite = Math.abs(y);
|
|
adjacent = Math.max(t, opposite);
|
|
opposite = Math.min(t, opposite);
|
|
|
|
var oppositeOverAdjacent = opposite / adjacent;
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (isNaN(oppositeOverAdjacent)) {
|
|
throw new Check.DeveloperError("either x or y must be nonzero");
|
|
}
|
|
//>>includeEnd('debug');
|
|
t = CesiumMath.fastApproximateAtan(oppositeOverAdjacent);
|
|
|
|
// Undo range reduction
|
|
t = Math.abs(y) > Math.abs(x) ? CesiumMath.PI_OVER_TWO - t : t;
|
|
t = x < 0.0 ? CesiumMath.PI - t : t;
|
|
t = y < 0.0 ? -t : t;
|
|
return t;
|
|
};
|
|
|
|
exports.CesiumMath = CesiumMath;
|
|
|
|
});
|