You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
311 lines
10 KiB
JavaScript
311 lines
10 KiB
JavaScript
/* This file is automatically rebuilt by the Cesium build process. */
|
|
define(['exports', './Cartesian2-44e93af5', './Transforms-eb995198', './Check-285f6bfc', './when-f31b6bd1', './Math-8c161f1c'], function (exports, Cartesian2, Transforms, Check, when, _Math) { 'use strict';
|
|
|
|
/**
|
|
* A plane in Hessian Normal Form defined by
|
|
* <pre>
|
|
* ax + by + cz + d = 0
|
|
* </pre>
|
|
* where (a, b, c) is the plane's <code>normal</code>, d is the signed
|
|
* <code>distance</code> to the plane, and (x, y, z) is any point on
|
|
* the plane.
|
|
*
|
|
* @alias Plane
|
|
* @constructor
|
|
*
|
|
* @param {Cartesian3} normal The plane's normal (normalized).
|
|
* @param {Number} distance The shortest distance from the origin to the plane. The sign of
|
|
* <code>distance</code> determines which side of the plane the origin
|
|
* is on. If <code>distance</code> is positive, the origin is in the half-space
|
|
* in the direction of the normal; if negative, the origin is in the half-space
|
|
* opposite to the normal; if zero, the plane passes through the origin.
|
|
*
|
|
* @example
|
|
* // The plane x=0
|
|
* var plane = new Cesium.Plane(Cesium.Cartesian3.UNIT_X, 0.0);
|
|
*
|
|
* @exception {DeveloperError} Normal must be normalized
|
|
*/
|
|
function Plane(normal, distance) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.Check.typeOf.object("normal", normal);
|
|
if (
|
|
!_Math.CesiumMath.equalsEpsilon(
|
|
Cartesian2.Cartesian3.magnitude(normal),
|
|
1.0,
|
|
_Math.CesiumMath.EPSILON6
|
|
)
|
|
) {
|
|
throw new Check.DeveloperError("normal must be normalized.");
|
|
}
|
|
Check.Check.typeOf.number("distance", distance);
|
|
//>>includeEnd('debug');
|
|
|
|
/**
|
|
* The plane's normal.
|
|
*
|
|
* @type {Cartesian3}
|
|
*/
|
|
this.normal = Cartesian2.Cartesian3.clone(normal);
|
|
|
|
/**
|
|
* The shortest distance from the origin to the plane. The sign of
|
|
* <code>distance</code> determines which side of the plane the origin
|
|
* is on. If <code>distance</code> is positive, the origin is in the half-space
|
|
* in the direction of the normal; if negative, the origin is in the half-space
|
|
* opposite to the normal; if zero, the plane passes through the origin.
|
|
*
|
|
* @type {Number}
|
|
*/
|
|
this.distance = distance;
|
|
}
|
|
|
|
/**
|
|
* Creates a plane from a normal and a point on the plane.
|
|
*
|
|
* @param {Cartesian3} point The point on the plane.
|
|
* @param {Cartesian3} normal The plane's normal (normalized).
|
|
* @param {Plane} [result] The object onto which to store the result.
|
|
* @returns {Plane} A new plane instance or the modified result parameter.
|
|
*
|
|
* @example
|
|
* var point = Cesium.Cartesian3.fromDegrees(-72.0, 40.0);
|
|
* var normal = ellipsoid.geodeticSurfaceNormal(point);
|
|
* var tangentPlane = Cesium.Plane.fromPointNormal(point, normal);
|
|
*
|
|
* @exception {DeveloperError} Normal must be normalized
|
|
*/
|
|
Plane.fromPointNormal = function (point, normal, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.Check.typeOf.object("point", point);
|
|
Check.Check.typeOf.object("normal", normal);
|
|
if (
|
|
!_Math.CesiumMath.equalsEpsilon(
|
|
Cartesian2.Cartesian3.magnitude(normal),
|
|
1.0,
|
|
_Math.CesiumMath.EPSILON6
|
|
)
|
|
) {
|
|
throw new Check.DeveloperError("normal must be normalized.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
var distance = -Cartesian2.Cartesian3.dot(normal, point);
|
|
|
|
if (!when.defined(result)) {
|
|
return new Plane(normal, distance);
|
|
}
|
|
|
|
Cartesian2.Cartesian3.clone(normal, result.normal);
|
|
result.distance = distance;
|
|
return result;
|
|
};
|
|
|
|
var scratchNormal = new Cartesian2.Cartesian3();
|
|
/**
|
|
* Creates a plane from the general equation
|
|
*
|
|
* @param {Cartesian4} coefficients The plane's normal (normalized).
|
|
* @param {Plane} [result] The object onto which to store the result.
|
|
* @returns {Plane} A new plane instance or the modified result parameter.
|
|
*
|
|
* @exception {DeveloperError} Normal must be normalized
|
|
*/
|
|
Plane.fromCartesian4 = function (coefficients, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.Check.typeOf.object("coefficients", coefficients);
|
|
//>>includeEnd('debug');
|
|
|
|
var normal = Cartesian2.Cartesian3.fromCartesian4(coefficients, scratchNormal);
|
|
var distance = coefficients.w;
|
|
|
|
//>>includeStart('debug', pragmas.debug);
|
|
if (
|
|
!_Math.CesiumMath.equalsEpsilon(
|
|
Cartesian2.Cartesian3.magnitude(normal),
|
|
1.0,
|
|
_Math.CesiumMath.EPSILON6
|
|
)
|
|
) {
|
|
throw new Check.DeveloperError("normal must be normalized.");
|
|
}
|
|
//>>includeEnd('debug');
|
|
|
|
if (!when.defined(result)) {
|
|
return new Plane(normal, distance);
|
|
}
|
|
Cartesian2.Cartesian3.clone(normal, result.normal);
|
|
result.distance = distance;
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Computes the signed shortest distance of a point to a plane.
|
|
* The sign of the distance determines which side of the plane the point
|
|
* is on. If the distance is positive, the point is in the half-space
|
|
* in the direction of the normal; if negative, the point is in the half-space
|
|
* opposite to the normal; if zero, the plane passes through the point.
|
|
*
|
|
* @param {Plane} plane The plane.
|
|
* @param {Cartesian3} point The point.
|
|
* @returns {Number} The signed shortest distance of the point to the plane.
|
|
*/
|
|
Plane.getPointDistance = function (plane, point) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.Check.typeOf.object("plane", plane);
|
|
Check.Check.typeOf.object("point", point);
|
|
//>>includeEnd('debug');
|
|
|
|
return Cartesian2.Cartesian3.dot(plane.normal, point) + plane.distance;
|
|
};
|
|
|
|
var scratchCartesian = new Cartesian2.Cartesian3();
|
|
/**
|
|
* Projects a point onto the plane.
|
|
* @param {Plane} plane The plane to project the point onto
|
|
* @param {Cartesian3} point The point to project onto the plane
|
|
* @param {Cartesian3} [result] The result point. If undefined, a new Cartesian3 will be created.
|
|
* @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided.
|
|
*/
|
|
Plane.projectPointOntoPlane = function (plane, point, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.Check.typeOf.object("plane", plane);
|
|
Check.Check.typeOf.object("point", point);
|
|
//>>includeEnd('debug');
|
|
|
|
if (!when.defined(result)) {
|
|
result = new Cartesian2.Cartesian3();
|
|
}
|
|
|
|
// projectedPoint = point - (normal.point + scale) * normal
|
|
var pointDistance = Plane.getPointDistance(plane, point);
|
|
var scaledNormal = Cartesian2.Cartesian3.multiplyByScalar(
|
|
plane.normal,
|
|
pointDistance,
|
|
scratchCartesian
|
|
);
|
|
|
|
return Cartesian2.Cartesian3.subtract(point, scaledNormal, result);
|
|
};
|
|
|
|
var scratchInverseTranspose = new Transforms.Matrix4();
|
|
var scratchPlaneCartesian4 = new Transforms.Cartesian4();
|
|
var scratchTransformNormal = new Cartesian2.Cartesian3();
|
|
/**
|
|
* Transforms the plane by the given transformation matrix.
|
|
*
|
|
* @param {Plane} plane The plane.
|
|
* @param {Matrix4} transform The transformation matrix.
|
|
* @param {Plane} [result] The object into which to store the result.
|
|
* @returns {Plane} The plane transformed by the given transformation matrix.
|
|
*/
|
|
Plane.transform = function (plane, transform, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.Check.typeOf.object("plane", plane);
|
|
Check.Check.typeOf.object("transform", transform);
|
|
//>>includeEnd('debug');
|
|
|
|
var normal = plane.normal;
|
|
var distance = plane.distance;
|
|
var inverseTranspose = Transforms.Matrix4.inverseTranspose(
|
|
transform,
|
|
scratchInverseTranspose
|
|
);
|
|
var planeAsCartesian4 = Transforms.Cartesian4.fromElements(
|
|
normal.x,
|
|
normal.y,
|
|
normal.z,
|
|
distance,
|
|
scratchPlaneCartesian4
|
|
);
|
|
planeAsCartesian4 = Transforms.Matrix4.multiplyByVector(
|
|
inverseTranspose,
|
|
planeAsCartesian4,
|
|
planeAsCartesian4
|
|
);
|
|
|
|
// Convert the transformed plane to Hessian Normal Form
|
|
var transformedNormal = Cartesian2.Cartesian3.fromCartesian4(
|
|
planeAsCartesian4,
|
|
scratchTransformNormal
|
|
);
|
|
|
|
planeAsCartesian4 = Transforms.Cartesian4.divideByScalar(
|
|
planeAsCartesian4,
|
|
Cartesian2.Cartesian3.magnitude(transformedNormal),
|
|
planeAsCartesian4
|
|
);
|
|
|
|
return Plane.fromCartesian4(planeAsCartesian4, result);
|
|
};
|
|
|
|
/**
|
|
* Duplicates a Plane instance.
|
|
*
|
|
* @param {Plane} plane The plane to duplicate.
|
|
* @param {Plane} [result] The object onto which to store the result.
|
|
* @returns {Plane} The modified result parameter or a new Plane instance if one was not provided.
|
|
*/
|
|
Plane.clone = function (plane, result) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.Check.typeOf.object("plane", plane);
|
|
//>>includeEnd('debug');
|
|
|
|
if (!when.defined(result)) {
|
|
return new Plane(plane.normal, plane.distance);
|
|
}
|
|
|
|
Cartesian2.Cartesian3.clone(plane.normal, result.normal);
|
|
result.distance = plane.distance;
|
|
|
|
return result;
|
|
};
|
|
|
|
/**
|
|
* Compares the provided Planes by normal and distance and returns
|
|
* <code>true</code> if they are equal, <code>false</code> otherwise.
|
|
*
|
|
* @param {Plane} left The first plane.
|
|
* @param {Plane} right The second plane.
|
|
* @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise.
|
|
*/
|
|
Plane.equals = function (left, right) {
|
|
//>>includeStart('debug', pragmas.debug);
|
|
Check.Check.typeOf.object("left", left);
|
|
Check.Check.typeOf.object("right", right);
|
|
//>>includeEnd('debug');
|
|
|
|
return (
|
|
left.distance === right.distance &&
|
|
Cartesian2.Cartesian3.equals(left.normal, right.normal)
|
|
);
|
|
};
|
|
|
|
/**
|
|
* A constant initialized to the XY plane passing through the origin, with normal in positive Z.
|
|
*
|
|
* @type {Plane}
|
|
* @constant
|
|
*/
|
|
Plane.ORIGIN_XY_PLANE = Object.freeze(new Plane(Cartesian2.Cartesian3.UNIT_Z, 0.0));
|
|
|
|
/**
|
|
* A constant initialized to the YZ plane passing through the origin, with normal in positive X.
|
|
*
|
|
* @type {Plane}
|
|
* @constant
|
|
*/
|
|
Plane.ORIGIN_YZ_PLANE = Object.freeze(new Plane(Cartesian2.Cartesian3.UNIT_X, 0.0));
|
|
|
|
/**
|
|
* A constant initialized to the ZX plane passing through the origin, with normal in positive Y.
|
|
*
|
|
* @type {Plane}
|
|
* @constant
|
|
*/
|
|
Plane.ORIGIN_ZX_PLANE = Object.freeze(new Plane(Cartesian2.Cartesian3.UNIT_Y, 0.0));
|
|
|
|
exports.Plane = Plane;
|
|
|
|
});
|