You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
288 lines
11 KiB
GLSL
288 lines
11 KiB
GLSL
/**
|
|
* @license
|
|
* Copyright (c) 2000-2005, Sean O'Neil (s_p_oneil@hotmail.com)
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* * Neither the name of the project nor the names of its contributors may be
|
|
* used to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Modifications made by Cesium GS, Inc.
|
|
*/
|
|
|
|
// Code: http://sponeil.net/
|
|
// GPU Gems 2 Article: https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter16.html
|
|
|
|
const float Kr = 0.0025;
|
|
const float Kr4PI = Kr * 4.0 * czm_pi;
|
|
const float Km = 0.0015;
|
|
const float Km4PI = Km * 4.0 * czm_pi;
|
|
const float ESun = 15.0;
|
|
const float KmESun = Km * ESun;
|
|
const float KrESun = Kr * ESun;
|
|
const vec3 InvWavelength = vec3(
|
|
5.60204474633241, // Red = 1.0 / Math.pow(0.650, 4.0)
|
|
9.473284437923038, // Green = 1.0 / Math.pow(0.570, 4.0)
|
|
19.643802610477206); // Blue = 1.0 / Math.pow(0.475, 4.0)
|
|
const float rayleighScaleDepth = 0.25;
|
|
|
|
const int nSamples = 2;
|
|
const float fSamples = 2.0;
|
|
|
|
const float g = -0.95;
|
|
const float g2 = g * g;
|
|
|
|
#ifdef COLOR_CORRECT
|
|
uniform vec3 u_hsbShift; // Hue, saturation, brightness
|
|
#endif
|
|
|
|
uniform vec3 u_radiiAndDynamicAtmosphereColor; // outer radius, inner radius, dynamic atmosphere color flag
|
|
|
|
float scale(float cosAngle)
|
|
{
|
|
float x = 1.0 - cosAngle;
|
|
return rayleighScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25))));
|
|
}
|
|
|
|
vec3 getLightDirection(vec3 positionWC)
|
|
{
|
|
float lightEnum = u_radiiAndDynamicAtmosphereColor.z;
|
|
vec3 lightDirection =
|
|
positionWC * float(lightEnum == 0.0) +
|
|
czm_lightDirectionWC * float(lightEnum == 1.0) +
|
|
czm_sunDirectionWC * float(lightEnum == 2.0);
|
|
return normalize(lightDirection);
|
|
}
|
|
|
|
void calculateRayScatteringFromSpace(in vec3 positionWC, in vec3 ray, in float innerRadius, in float outerRadius, inout float far, out vec3 start, out float startOffset)
|
|
{
|
|
// Calculate the closest intersection of the ray with the outer atmosphere (which is the near point of the ray passing through the atmosphere)
|
|
float cameraHeight = length(positionWC);
|
|
float B = 2.0 * dot(positionWC, ray);
|
|
float C = cameraHeight * cameraHeight - outerRadius * outerRadius;
|
|
float det = max(0.0, B * B - 4.0 * C);
|
|
float near = 0.5 * (-B - sqrt(det));
|
|
|
|
// Calculate the ray's starting position, then calculate its scattering offset
|
|
start = positionWC + ray * near;
|
|
far -= near;
|
|
float startAngle = dot(ray, start) / outerRadius;
|
|
float startDepth = exp(-1.0 / rayleighScaleDepth);
|
|
startOffset = startDepth * scale(startAngle);
|
|
}
|
|
|
|
void calculateRayScatteringFromGround(in vec3 positionWC, in vec3 ray, in float atmosphereScale, in float innerRadius, out vec3 start, out float startOffset)
|
|
{
|
|
// Calculate the ray's starting position, then calculate its scattering offset
|
|
float cameraHeight = length(positionWC);
|
|
start = positionWC;
|
|
float height = length(start);
|
|
float depth = exp((atmosphereScale / rayleighScaleDepth ) * (innerRadius - cameraHeight));
|
|
float startAngle = dot(ray, start) / height;
|
|
startOffset = depth*scale(startAngle);
|
|
}
|
|
|
|
czm_raySegment rayEllipsoidIntersection(czm_ray ray, vec3 inverseRadii)
|
|
{
|
|
vec3 o = inverseRadii * (czm_inverseView * vec4(ray.origin, 1.0)).xyz;
|
|
vec3 d = inverseRadii * (czm_inverseView * vec4(ray.direction, 0.0)).xyz;
|
|
|
|
float a = dot(d, d);
|
|
float b = dot(d, o);
|
|
float c = dot(o, o) - 1.0;
|
|
float discriminant = b * b - a * c;
|
|
if (discriminant < 0.0)
|
|
{
|
|
return czm_emptyRaySegment;
|
|
}
|
|
discriminant = sqrt(discriminant);
|
|
float t1 = (-b - discriminant) / a;
|
|
float t2 = (-b + discriminant) / a;
|
|
|
|
if (t1 < 0.0 && t2 < 0.0)
|
|
{
|
|
return czm_emptyRaySegment;
|
|
}
|
|
|
|
if (t1 < 0.0 && t2 >= 0.0)
|
|
{
|
|
t1 = 0.0;
|
|
}
|
|
|
|
return czm_raySegment(t1, t2);
|
|
}
|
|
|
|
vec3 getAdjustedPosition(vec3 positionWC, float innerRadius)
|
|
{
|
|
// Adjust the camera position so that atmosphere color looks the same wherever the eye height is the same
|
|
float cameraHeight = czm_eyeHeight + innerRadius;
|
|
return normalize(positionWC) * cameraHeight;
|
|
}
|
|
|
|
vec3 getTranslucentPosition(vec3 positionWC, vec3 outerPositionWC, float innerRadius, out bool intersectsEllipsoid)
|
|
{
|
|
vec3 directionWC = normalize(outerPositionWC - positionWC);
|
|
vec3 directionEC = czm_viewRotation * directionWC;
|
|
czm_ray viewRay = czm_ray(vec3(0.0), directionEC);
|
|
czm_raySegment raySegment = rayEllipsoidIntersection(viewRay, czm_ellipsoidInverseRadii);
|
|
intersectsEllipsoid = raySegment.start >= 0.0;
|
|
|
|
if (intersectsEllipsoid)
|
|
{
|
|
return positionWC + raySegment.stop * directionWC;
|
|
}
|
|
|
|
return getAdjustedPosition(positionWC, innerRadius);
|
|
}
|
|
|
|
void calculateMieColorAndRayleighColor(vec3 outerPositionWC, out vec3 mieColor, out vec3 rayleighColor)
|
|
{
|
|
// Unpack attributes
|
|
float outerRadius = u_radiiAndDynamicAtmosphereColor.x;
|
|
float innerRadius = u_radiiAndDynamicAtmosphereColor.y;
|
|
|
|
#ifdef GLOBE_TRANSLUCENT
|
|
bool intersectsEllipsoid = false;
|
|
vec3 startPositionWC = getTranslucentPosition(czm_viewerPositionWC, outerPositionWC, innerRadius, intersectsEllipsoid);
|
|
#else
|
|
vec3 startPositionWC = getAdjustedPosition(czm_viewerPositionWC, innerRadius);
|
|
#endif
|
|
|
|
vec3 lightDirection = getLightDirection(startPositionWC);
|
|
|
|
// Get the ray from the start position to the outer position and its length (which is the far point of the ray passing through the atmosphere)
|
|
vec3 ray = outerPositionWC - startPositionWC;
|
|
float far = length(ray);
|
|
ray /= far;
|
|
|
|
float atmosphereScale = 1.0 / (outerRadius - innerRadius);
|
|
|
|
vec3 start;
|
|
float startOffset;
|
|
|
|
#ifdef SKY_FROM_SPACE
|
|
#ifdef GLOBE_TRANSLUCENT
|
|
if (intersectsEllipsoid)
|
|
{
|
|
calculateRayScatteringFromGround(startPositionWC, ray, atmosphereScale, innerRadius, start, startOffset);
|
|
}
|
|
else
|
|
{
|
|
calculateRayScatteringFromSpace(startPositionWC, ray, innerRadius, outerRadius, far, start, startOffset);
|
|
}
|
|
#else
|
|
calculateRayScatteringFromSpace(startPositionWC, ray, innerRadius, outerRadius, far, start, startOffset);
|
|
#endif
|
|
#else
|
|
calculateRayScatteringFromGround(startPositionWC, ray, atmosphereScale, innerRadius, start, startOffset);
|
|
#endif
|
|
|
|
// Initialize the scattering loop variables
|
|
float sampleLength = far / fSamples;
|
|
float scaledLength = sampleLength * atmosphereScale;
|
|
vec3 sampleRay = ray * sampleLength;
|
|
vec3 samplePoint = start + sampleRay * 0.5;
|
|
|
|
// Now loop through the sample rays
|
|
vec3 frontColor = vec3(0.0, 0.0, 0.0);
|
|
|
|
for (int i = 0; i<nSamples; i++)
|
|
{
|
|
float height = length(samplePoint);
|
|
float depth = exp((atmosphereScale / rayleighScaleDepth ) * (innerRadius - height));
|
|
float fLightAngle = dot(lightDirection, samplePoint) / height;
|
|
float fCameraAngle = dot(ray, samplePoint) / height;
|
|
float fScatter = (startOffset + depth*(scale(fLightAngle) - scale(fCameraAngle)));
|
|
vec3 attenuate = exp(-fScatter * (InvWavelength * Kr4PI + Km4PI));
|
|
frontColor += attenuate * (depth * scaledLength);
|
|
samplePoint += sampleRay;
|
|
}
|
|
|
|
// Finally, scale the Mie and Rayleigh colors and set up the varying variables for the pixel shader
|
|
mieColor = frontColor * KmESun;
|
|
rayleighColor = frontColor * (InvWavelength * KrESun);
|
|
|
|
// Cap mie and rayleigh colors to prevent NaNs when vertex interpolation happens
|
|
mieColor = min(mieColor, vec3(10000000.0));
|
|
rayleighColor = min(rayleighColor, vec3(10000000.0));
|
|
}
|
|
|
|
vec4 calculateFinalColor(vec3 positionWC, vec3 toCamera, vec3 lightDirection, vec3 mieColor, vec3 rayleighColor)
|
|
{
|
|
// Extra normalize added for Android
|
|
float cosAngle = dot(lightDirection, normalize(toCamera)) / length(toCamera);
|
|
float rayleighPhase = 0.75 * (1.0 + cosAngle * cosAngle);
|
|
float miePhase = 1.5 * ((1.0 - g2) / (2.0 + g2)) * (1.0 + cosAngle * cosAngle) / pow(1.0 + g2 - 2.0 * g * cosAngle, 1.5);
|
|
|
|
vec3 rgb = rayleighPhase * rayleighColor + miePhase * mieColor;
|
|
|
|
const float exposure = 2.0;
|
|
vec3 rgbExposure = vec3(1.0) - exp(-exposure * rgb);
|
|
|
|
#ifndef HDR
|
|
rgb = rgbExposure;
|
|
#endif
|
|
|
|
#ifdef COLOR_CORRECT
|
|
// Convert rgb color to hsb
|
|
vec3 hsb = czm_RGBToHSB(rgb);
|
|
// Perform hsb shift
|
|
hsb.x += u_hsbShift.x; // hue
|
|
hsb.y = clamp(hsb.y + u_hsbShift.y, 0.0, 1.0); // saturation
|
|
hsb.z = hsb.z > czm_epsilon7 ? hsb.z + u_hsbShift.z : 0.0; // brightness
|
|
// Convert shifted hsb back to rgb
|
|
rgb = czm_HSBToRGB(hsb);
|
|
#endif
|
|
|
|
float outerRadius = u_radiiAndDynamicAtmosphereColor.x;
|
|
float innerRadius = u_radiiAndDynamicAtmosphereColor.y;
|
|
float lightEnum = u_radiiAndDynamicAtmosphereColor.z;
|
|
|
|
float cameraHeight = czm_eyeHeight + innerRadius;
|
|
|
|
// Alter alpha based on how close the viewer is to the ground (1.0 = on ground, 0.0 = at edge of atmosphere)
|
|
float atmosphereAlpha = clamp((outerRadius - cameraHeight) / (outerRadius - innerRadius), 0.0, 1.0);
|
|
|
|
// Alter alpha based on time of day (0.0 = night , 1.0 = day)
|
|
float nightAlpha = (lightEnum != 0.0) ? clamp(dot(normalize(positionWC), lightDirection), 0.0, 1.0) : 1.0;
|
|
atmosphereAlpha *= pow(nightAlpha, 0.5);
|
|
|
|
vec4 finalColor = vec4(rgb, mix(clamp(rgbExposure.b, 0.0, 1.0), 1.0, atmosphereAlpha) * smoothstep(0.0, 1.0, czm_morphTime));
|
|
|
|
if (mieColor.b > 1.0)
|
|
{
|
|
// Fade atmosphere below the ellipsoid. As the camera zooms further away from the ellipsoid draw
|
|
// a larger atmosphere ring to cover empty space of lower LOD globe tiles.
|
|
float strength = mieColor.b;
|
|
float minDistance = outerRadius;
|
|
float maxDistance = outerRadius * 3.0;
|
|
float maxStrengthLerp = 1.0 - clamp((maxDistance - cameraHeight) / (maxDistance - minDistance), 0.0, 1.0);
|
|
float maxStrength = mix(100.0, 10000.0, maxStrengthLerp);
|
|
strength = min(strength, maxStrength);
|
|
float alpha = 1.0 - (strength / maxStrength);
|
|
finalColor.a = alpha;
|
|
}
|
|
|
|
return finalColor;
|
|
}
|